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The geometry of real fractures is modeled by random surfaces numerically generated. The fracture space and
the contact area are determined by the spatial distribution of the upper and lower surfaces. The contact area and
the mean aperture are analytically studied. The contact number is calculated for fractures with different height
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I. INTRODUCTION

Experimental and theoretical analyses of hydraulic, trans-
port, and mechanical properties of real fractures in rock have
shown that they depend on the geometry of fracture space
and surfaces. It has been shown by experiments@1,2# and by
direct numerical simulations@3,4# that the flow in a single
fracture with rough surfaces occurs through a system of flow
paths separated by contact zones. The flux distribution de-
pends on the variance of the fracture aperture probability
distribution; the size of the flow channels is determined by
the spatial correlation length of the aperture field.

Flow channeling in fractures influences solute transport
@1,5#. It was found that the apparent solute dispersion de-
pends on the variance of the aperture distribution@3# and on
the mixing between flow channels@6,7#.

The models that are usually used in the study of the
stress-strain behavior of fractured media include the aperture
density distribution and the spatial correlations@8#. The clo-
sure of rock joints depends on the fracture surface roughness
and the surface topography@9#. The distribution of contacts
between fracture surfaces influences the normal joint stiff-
ness@10#.

Natural rough surfaces are considered in many studies,
but only a few works deal with real fractures. Brown, Kranz,
and Bonner@11# measured surface profiles and considered
the composite topography of natural rock joints. The com-
posite topography of correlated and uncorrelated rock frac-
tures was studied by Brown and Scholz@12,9#. Aperture
measurements were made by Hakami and Barton@13# and
spatial correlations of the aperture field were analyzed by
Hakami@14#. An exponential model was found to be a good
approximation of these correlations. Laboratory measure-
ments of fracture apertures and contact areas were presented
by Gale @15#. Some geometric properties of real fractures
were studied experimentally by Gentier@2#. It was shown
that the experimental variograms of surface profiles at small
distances are well described by a Gaussian model.

The model of a fracture as a void volume between two
random spatially correlated surfaces was successfully used in
various studies. Brown@4,16# numerically analyzed fluid
flow and electric conduction in a fracture whose surfaces
have normally distributed heights. Closure of a fracture with
two rough surfaces was considered by Unger and Mase@17#.
The model of a fracture with spatially correlated fractal sur-
faces was developed by Wang, Narasimhan, and Scholz@18#.
A recent paper of Plouraboue´ et al. @19# deals with the aper-
ture of fractures with self-affine surfaces.

To the best of our knowledge, the geometrical properties
of fractures have not been systematically studied from a
theoretical standpoint, though they represent an interesting
problem where several ingredients are intimately mixed. Ba-
sically, a fracture is a random two-dimensional structure
whose geometry and topology control the flow properties.
The two-dimensional character is a crucial simplification in
many respects. The properties of excursion sets of random
fields @20# can be used to derive the number of contacts
between the two surfaces; because of the two-dimensional
character, this number is closely related to the connectivity
of the open space@21#. The fracture aperture is also a random
function of position to which the classical techniques of per-
colation ~cf. @22#! can be applied. Hence this study necessi-
tates the application of a variety of techniques that are gath-
ered here in an unusual manner; in order to make this paper
readable by people with different backgrounds, each tech-
nique is presented in a relatively detailed way, which may be
too long for the specialists. A last important remark is that
the results of this study will be compared to experimental
data whenever possible.

This paper is organized as follows. Section II is devoted
to a general description of the model where fractures are
obtained by generating couples of random surfaces. Each
surface can be described by its height with respect to a given
reference plane. The heights are assumed to be normally dis-
tributed with a given standard deviationsh . The distance
between the average planes of each surface is the mean ap-
erturebm of the fracture. The heights of one surface may be
assumed to be spatially correlated; a particular correlation
function has been chosen that contains two parameters: the
correlation lengthl and a characteristic exponentH. Finally,
the two surfaces of a given fracture may be correlated one to
another; this intercorrelation is characterized by a dimension-
less parameteru. Hence the modelization that is used in this
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paper contains four independent parametersbm/sh , l /sh , H,
andu. The resulting fractures can be described by a number
of macroscopic geometric entities, such as the contact zones,
the closed and open fracture volume, and the cyclomatic
number of the percolating cluster which are carefully defined
in Sec. II. The influence of the four independent parameters
on these macroscopic properties will be studied in this paper.

The method of random surface generation with given sta-
tistical properties is described. A spatially periodic stochastic
field is generated on a unit cell by the method of Fourier
transforms. The unit cell of sizeL is discretized in elemen-
tary squares of sizea. Thus two additional length scalesa
andL are introduced in the modelization; since they are ar-
tificial in character, they should not influence the macro-
scopic properties. Because the two surfaces of the fracture
cannot overlap, the corresponding Gaussian variables are at a
threshold, as they were for reconstructed porous media@23#.
This direct analogy can be used to derive some analytical
expressions for the mean contact zone area, for the mean
fracture volume, and for their variations that are compared
with numerical results in Sec. III. Good agreement is ob-
tained for mean values and for variances.

The distribution of contacts between fracture surfaces is
analyzed in Sec. IV. For Gaussian random fields with a dif-
ferentiable covariance, the contact number estimations com-
pare well with the numerical results. The analysis was ex-
tended to nondifferentiable covariances. It is shown that for
self-affine surfaces the number of finite contact zones de-
pends upon the discretization parametera/ l according to a
power law. When the contact area is smaller than a certain
critical value, some of the noncontacting zones form the
open fracture space that corresponds to the so-called perco-
lating cluster. The connectivity of the cluster is quantified by
the first Betti numberb1~APC!, i.e., the number of indepen-
dent cycles. It was found thatb1~APC! is a decreasing func-
tion of the correlation length of the aperture field, in the
same manner as the contact number.

Percolating properties and the structure of the percolating
cluster of the fracture are analyzed in Sec. V. The percolating
thresholdPc for the model considered corresponds to ‘‘site’’
percolation on a square lattice. It is shown thatPc is a de-
creasing function of the ratiol /a. For the percolating cluster
near the threshold, the critical exponentsb, b/n, andg are
calculated for various parameters of the model.

II. GENERAL

A. Height distribution

Real fractures in rocks are very heterogeneous and irregu-
lar in character. Usually, an arbitrary reference planez50 is
introduced and both upper and lower surfaces of the fracture
are described by@Fig. 1~a!#

z5h6~x,y!1h0
6 , ~1!

where h0
6 are the mean planes of each surface. This is a

simplification of the problem because a real fracture profile
may not be a single-valued function ofx andy @Fig. 1~b!#. A
detailed analysis of the rock surfaces with a scanning elec-
tron microscope showed that overhangs are not prevalent at

scales comparable with the resolution of the laboratory pro-
filometer @24#; therefore such cases are not considered here.

At a given point (x,y), the mean surfacez* , the separa-
tion w, and the distancebm between mean surfaces are de-
fined as

z*5 1
2 ~h11h0

11h21h0
2!, ~2a!

w5h11h0
12h22h0

2 , ~2b!

FIG. 1. ~a! Conventions and notations for the fracture geometry.
~b! Overhanging of a fracture surface profile.~c! Contact area and
void area of a fracture.A/ l 256, Nc59, andnc51.5.
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bm5^w&5h0
12h0

2 , ~2c!

where ^ & denotes the statistical expectation. Whenbm de-
creases, the two surfaces touch one another. In principle, the
new shape of the two surfaces after contact occurs could be
obtained by taking into account the deformation of the two
matrices. However, this phenomenon will not be considered
here. Instead, a simplified viewpoint will be adopted@18,4#
and the separationb is defined as

b5 Hw, w~r !>0
0, w~r !,0. ~3!

Observation results are often described by a Gaussian dis-
tribution @9#

w~T!5
1

A2psT

expF2
T2

2sT2
G , T5h1,h2 ~4!

sT
25^T2&,

wheresT is the standard deviation ofT; it is supposed that
^T&50. This paper will be restricted to such Gaussian height
distributions.

When both surfaces are totally separated and do not touch
each other, the mean surfacez* and the separationw are also
Gaussian functions with standard deviationssw and sz ,
which are related tosh by

sh
25se

21 1
4sw

2 , ~5!

sh5sh
15sh

2 .

The upper and lower surfaces of real fractures cannot be
considered as statistically independent. Observation of
‘‘mated’’ fractures@11# showed that profile heights of both
surfaces are correlated over large distances, depending upon
the origin of the fracture. Consider the cross covariance

^h1h2&5sh
22 1

2sw
2 . ~6!

If the surfaces are not correlated, it is easy to derive from~6!
that

sw
252sh

2. ~7!

In the opposite case of perfect correlation, both surfaces have
the same profile andw is constant

sw50. ~8!

The correlation parameteru may be defined as

u5
^h1h2&

sh
2 512

sw
2

2sh
2 , 0<u<1. ~9!

The correlation parameteru widely varies for various types
of fractures. Brown and Scholz@12# used totally unmated
joints ~u50! in closure experiments. In contrast with this,
Gentier@2# studied fractures in granite that were in the op-
posite limit of highly correlated surfaces~u'0.98!. The
joints used by Brown, Kranz, and Bonner@11# were charac-
terized byu'0.7 and 0.94. More detailed information about

the correlation of the surfaces may be derived from the spa-
tial cross-covariance function~see Sec. II B!.

The separationb is not equal to the local distancebd
between surfaces@Fig. 1~a!# and it is obvious thatbd<b.
Hereb is called the aperture of the fracture and^b& is the
mean aperture.

B. Correlations in the fracture plane

Usually,h6 are homogeneous random functions ofx and
y. The statistical properties of a random fieldT~r ! are char-
acterized by a probability densityw(T) for the statistical dis-
tribution of the local values ofT and a spatial covariance
functionCT~r ,s!, which is defined as

CT~r ,s!5^@T~r !2^T&#@T~s!2^T&#&. ~10a!

If T~r ! is a homogeneous and isotropic field, which is often
true for fracture surfaces, the covariance function only de-
pends upon the scalarr5ir2si ~iai denotes the norm of a
vectora!,

CT~r ,s!5CT~r !. ~10b!

The correlation between the upper and lower surfaces can be
described by a cross-covariance formula

Ch* ~r ,s!5^h1~r !h2~s!&. ~11!

If Ch6 andCh* are known andCh* is only a function ofr , the
covariance functionsCz* andCw for z* andw can be found

Cz* ~r !5~Ch1Ch* !/2,

Cw~r !52~Ch2Ch* !. ~12!

Several covariance functions are proposed for fracture
surfaces. Whitehouse and Archard@25# used an exponential
function

Ch5sh
2exp~2r / l !, ~13!

where l is the correlation distance. Experimental measure-
ments of fracture aperture distribution@14,26# showed that
spatial correlations ofb of a large class of rock fractures may
be well approximated by the exponential model.

It is known @20# that a homogeneous random field pos-
sesses everywhere a mean-square derivative if and only if the
second-order partial derivative of its covariance function ex-
ists and is finite at the origin. Since the correlation function
~13! displays an angular point atr50, random fields with
this covariance are nondifferentiable in mean square.

If Ch is a Gaussian function,

Ch5sh
2exp@2~r / l !2#, ~14!

the corresponding random fields are continuous and have
derivatives in mean square. Both~13! and~14! are particular
cases of the general form@27#

Ch5sh
2exp@2~r / l !2H#, 0<H<1. ~15!

The covariance function~15! with 0,H,1 corresponds to
self-affine surfaces that remain the same in a statistical sense
under an affine transformation in vertical and horizontal di-
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rections@28#. This form of the covariance function uses the
fact that in practice there exists an effective upper cutoff
length l for self-affinity, above which all the correlations
between surface heights disappear. The parameterH is called
the ‘‘roughness exponent’’@29# and it describes the scaling
law for self-affine surface heights.

The analysis of power spectra of various natural rock sur-
faces@24# showed that they verify the power law~15!. The
self-affine model was successfully used to describe fracture
geometry@18,19# and fluid flow; it was also used to study
electrical transport@4,16# and hydrodynamic tracer disper-
sion in fractures@30#.

The upper and lower surfaces of the fractures are sup-
posed to be generated with the same spatial correlation dis-
tancel ; the covarianceCh and the cross covarianceCh* are
described by the general form~15! with the samel as well.
This agrees with the results of the laboratory study of well-
mated ~u'0.97! fractures in granite, where the covariance
functionsCh6/s h

2 and the cross covarianceCh* /Ch* (0) were
found to be identical@2#. In the opposite limitu50, the cross
covarianceCh*50 and the spatial correlations in the fracture
plane are completely defined by the covariance functions

Ch6 . For intermediate values ofu, the real fracture surfaces
are shown to be correlated on scales larger than some ‘‘cor-
relation distance’’l0 and mismatched at small scales. This
can be deduced from the power spectra of the composite
topography of fracture surfaces@11#. An analysis of the to-
pography data for Gaussian fractures in quartzite~sh'4 mm!
and in granite~sh'1.5mm! showed thatl0 lay within 150–
200 and 75–100mm, respectively@9#. These values are
larger than the corresponding correlation distancesl for the
surfaces: 12–15 and 5–7mm.

C. Generation of fractures

In order to analyze the fracture geometry, random fields
with prescribed statistical properties should be generated.
Since only homogeneous Gaussian surfaces are considered
here, the problem is restricted to normally distributed vari-
ables.

Since it is impossible to generate fields with an arbitrarily
large extent, an homogeneous fracture is considered as a
two-dimensional spatially periodic medium, composed of
identical unit cells of sizeL, which is supposed to be much
larger than the correlation distancel of the generated field. A
correlated random Gaussian field can be generated by the
method of Fourier transforms, which is recalled by Adler
@23#. The numerical grid is composed ofNL3NL elementary
squares of sizeDx5Dy5a; the correlation distance is dis-
cretized into nl such squares, i.e.,l5nla; moreover,
L5NLa. At each node~xk5ka, ym5ma!, the Gaussian spa-
tially correlated periodic fieldYkm may be calculated as

Ykm5NL (
s,p50

NL21

AR̂spX̂spexpF2
2p i ~sk1mp!

NL
G ,

k,m50, . . . ,NL ~16!

R̂sp5
1

NL
2 (
k,m50

NL21

CkmexpF2p i ~sk1mp!

NL
G , s,p50,...,NL

X̂sp5
1

NL
2 (
k,m50

NL21

XkmexpF2p i ~sk1mp!

NL
G .

Ckm is the covariance matrix ofYkm , which is derived from
~10b!,

Ckm5CT~Axk21ym
2 !. ~17!

Xkm is a noncorrelated standard Gaussian field.
Properties of the mean surfacez* are not analyzed here.

The upper and lower surfaces of fractures are supposed to be
independently generated~u50!, but with the same spatial
correlation distancel . Because the vertical and lateral coor-
dinates are not connected in the models considered here, it is
possible to use different length scales for them. The natural
length scale of the vertical coordinate is the standard devia-
tion sh ; the two horizontal coordinates were normalized by
the correlation distancel .

Some examples of generated fields are presented in Fig. 2

FIG. 2. ~a!–~c! Examples of simulated aperture distributions
over the fracture plane and~d!–~f! the corresponding graphs of the
skeleton of the open fracture space. Six levels of shadings are dis-
tinguished from zero~white! to the largest value~dark! of the ap-
erture. The shading steps are equal to 1.25sh . Data are for~a! and
~d! bm/sh51, H51; ~b! and ~e! bm/sh50.2, H51; ~c! and ~f!
bm/sh50.2,H50.5.
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for various values ofbm andH. For each generated sample,
the covarianceCT , defined in~10a!, can be estimated as

CT
e~k,m!5

1

NL
2 (
s,p50

NL21

Ts,pTs2k,p2m2T̄2, ~18!

T̄5
1

NL
2 (
s,p50

NL
2

Ts,p , T5h1,h2.

Due to the finite size of the unit cells,CT
e may differ from

CT and may vary from one realization ofT to another. It was
found that for a single realization,Ch

e may differ from the
theoreticalCh used in~16! by more than 20% forx/ l>1.
WhenCh

e was averaged over five realizations, the difference
with Ch decreased to 10%.

Tests were performed to find the minimal number of re-
alizationsNr that yields statistically representative results.
Various quantities were averaged overNr realizations andNr
was increased until the mean values were stable. The number
of realizationsNr that was needed to obtain significant
means depended upon the quantity of interest and the param-
eters of fractures. In each case, it was defined separately.

It should be noted that the statistical stability of the results
depends upon the sample sizeL/ l . For example, Fig. 3 shows
the standard deviations^S0& of the mean valuêS0& of the
fractional void area of the fracture averaged over different
sets of realizations as a function of the parameterL/ l . It is
clear thats^S0& is a decreasing function ofL/ l .

D. Terminology

When surfaces are in contact, the area of contact and the
number of contact zones are random variables that depend on
the statistical properties of surfaces and the mean separation
bm . The contact surface can be described by two variables,
namely, the number of contact zonesnc for the areal

2, based
on the correlation distance, and the fractional contact area
Sc , which is defined as

nc5Nc

l 2

A
, ~19!

Sc5
Ac

A
, ~20!

whereAc is the area of the projection of the total contact
surface on the planez50,A is the cross-sectional area of the
fracture plane, andNc is the total number of contacts overA
@Fig. 1~c!#.

When the separationbm is large enough, the contact sur-
face is split intoNc finite contact zones. Whenbm decreases,
new contact zones appear and the existing ones grow and
merge; at some critical valuebm5bmc , a contact zone of
infinite extent appears, together with some finite contact
zones that persist.

Equivalently, the total numberN0 and the numbern0 for
the areal 2 of noncontacting zones~or void zones! can be
introduced

n05N0

l 2

A
. ~21!

The fractional voidS0 is defined as

S05
A0

A
512Sc , ~22!

whereA0 is the projection of the total surface of the void
volume of the fracture.

When the contact surface is small, most of the noncon-
tacting zones may be gathered into a large percolating clus-
ter, where fluid circulates. The probabilityPc of the appear-
ance of such a percolating cluster is called the percolating
probability @31#.

The ratioSPC between the area of the projectionAPC of
the surface of the percolating cluster andA is called the
fractional area of the percolating cluster

SPC5
APC

A
. ~23!

A fracture can be partitioned into open and closed spaces
depending whether or not a zone withb.0 belongs to the
percolating clusters. The total numberN0 of void zones in-
cludes the number of percolating clusters, which is usually 1,
and the numberN021 of isolated void zones of finite extent.

Define the average sizeZ0 of a finite void zone as

Z05
(k51
N0 Ak0

2

(k51
N0 Ak0

, ~24!

whereAk0 is the area of thekth isolated void zone. The sums
in ~24! run only over zones of finite extent and the infinite
percolating cluster is excluded. The definition~24! corre-
sponds to the usual definition of the average cluster size@22#
used in percolation literature.

FIG. 3. Standard deviations^S0&
of the mean fractional void area

^S0& over Nr realizations forbm/sh50.2, H50.5. Data are for
l /a58 ~dotted lines! and 2~dashed lines!; Nr510 ~s!, 20 ~3!.
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When the two surfaces are separated and the contact sur-
face is subdivided into several zonesNc , the percolating
cluster may be skeletized and can be reduced to a graph with
Ne connecting edges andNv vertices. This graph can be used
as for porous media@32# to characterize the structure of the
percolating cluster by the number of independent cycles, i.e.,
by the first Betti numberb1~APC!,

b1~APC!5Ne2Nv11, ~25!

where the number of connected components is supposed to
be equal to 1.

It should be noted that the numberb1~APC! can be con-
sidered as the number of ‘‘holes’’~i.e., of contact zones! in
the percolating cluster. It is obvious thatb1~APC!<Nc be-
cause some contacts can be located within void zones of
finite size~such asC1 andC2 in Fig. 4!.

The geometry of a fracture is fully described by the co-
variance functionsCz* andCw and by the probability densi-
ties w~z* ! and w(w). The main goal of this paper is the
statistical characterization of the geometry of a fracture.Nr
statistical realizations of fractures with fixed values ofsh ,
sw , l , H, andbm were generated; then the statistical means
of the aperturêb&, of the fractional areasSc ,S0 ,SPC, and of
other characteristic quantities were analyzed as functions of
these geometrical parameters.

III. GAUSSIAN SURFACES: SOME THEORETICAL
RESULTS AND NUMERICAL SIMULATIONS

Some parameters of Gaussian correlated fields, such as
the mean aperture, the fractional area, and some others may
be estimated analytically. Such estimations are presented
here together with results of numerical simulations.

A. The fractional void area

It is convenient to start with the fractional void areaS0.
The apertureb(x,y) defined by~3! has a probability density
that is simply a truncated Gaussian distribution

w1~b!5
Ab

&psb*
expF2

~b2bm!2

2sb*
2 G , b.0

~26!

sb*5&sh ~u50!.

Since~26! only describes the caseb.0, the probability den-
sity needs to be renormalized by the constantAb

Ab5
2

r
, r5erfcS 2

bm

&sb*
D . ~27!

For any realization,S0 is defined as the average of the phase
functionB of the void zones

S05
1

A E
A
B~r !ds, ~28a!

B~r !5 H 1, w~r !.0
0, w~r !<0. ~28b!

The random fieldB, which is derived from a Gaussian field,
was used by Adler, Jacquin, and Quiblier@33# to study three-
dimensional porous media. It is clear that the statistical prop-
erties ofB can be derived from those ofw. The derivation of
the covariance functionCB from Cw is presented by Adler,
Jacquin, and Quiblier@33# together with the solution of the
inverse problem. Here, only the mean^S0& and the variance
of S0 will be evaluated.̂S0& can be estimated as

^S0&5Prob$w.0%. ~28c!

FIG. 4. Distribution of contacts within a fracture.Nc55,
b1~APC!53. Two contactsC1 andC2 are contained within a finite
void zoneV; two contacts of finite extent,C3 andC4, are contained
within the percolating clusterAPC; C5 is the only contact zone of
infinite extent.

TABLE I. Standard deviationssS0
and s b̄ of the mean void

areaS0 and of the mean apertureb̄ estimated numerically and de-
rived from Eqs.~32! and ~38!. Data are forH51, bm/sh50.2,
l /a54, andNr550.

l /L

sS0
s b̄

numerical theoretical numerical theoretical

0.050 0.0338 0.0361 0.0659 0.0740
0.057 0.0431 0.0412 0.0891 0.0845
0.067 0.0496 0.0481 0.1028 0.0987
0.080 0.0626 0.0577 0.1174 0.1184
0.100 0.0742 0.0722 0.1546 0.1479
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Sincew is a standard Gaussian function,^S0& is equal to

^S0&5
r

2
. ~29!

The substitutionbm50 gives the obvious result^S0&51/2.
Results relative tôS0& are presented in Fig. 5~a! for vari-

ous covariancesCb . Good agreement exists between the
theoretical result~29! and the numerical results.

The value ofS0 defined by~28a! is the spatial average of
the variableB over the fracture planeA and converges to
^S0& only when the sample sizeL/ l tends to infinity. In prac-
tice,S0 is also a random variable and varies from one statis-
tical realization of a fracture to another and the variance
sS0
2 5^S0

2&2^S0&
2 depends upon the sample sizeL/ l .

So far, only the Gaussian distribution of the heights has
been used to find̂S0&. If the variance ofS0 is to be calcu-
lated, the correlation properties in the fracture plane are

needed, as illustrated by the following calculations. Accord-
ing to ~28!, the fluctuations ofS0 are described by the vari-
ance

sS0
2 5

1

A2 E
A
E
A
^B~r1!B~r2!&ds1ds22F 1A E

A
^B~r !&dsG2

5
1

A E
A
CB~r !ds, ~30!

whereCB is the covariance function of the fieldB~r ! @23#

CB~r !5^B~0!B~r !&2^B&2,

^B~0!B~r !&5E
0

1`

dw1E
0

1`

w~w1 ,w2!dw2 , ~31a!

andw(w1 ,w2) is the joint distribution of two Gaussian vari-
ables

w~w1 ,w2!5
1

2psb*
2A12g2

expF2
~w12bm!222g~w12bm!~w22bm!1~w22bm!2

2sb*
2~12g2! G ,

g5
Cw~r !

sb*
2 , r5ir i . ~31b!

It is easy to show that, ifCw(r ) decreases exponentially
when r tends to infinity,CB(r ) also approaches 0. In the
limit l /L!1 andbm /sb*!1, one can obtain from~30!

sS0
2 5S lL D 2FZ12S bmsb*

D 2Z2G , ~32!

whereZ1 andZ2 depend only uponH. Formula~32! provides
an estimation of the variance of the numerical calculations of
the mean valuêS0& and illustrates the influence of the
sample size on the statistical stability of the numerical simu-
lations ~see Table I!.

B. Mean aperture

Two possible definitions of the mean aperture^b& can be
distinguished. The first onêb&0 is the mean value over the
void fracture area, and the second one^b& is taken over the
whole surface of the fracture

^b&05E
0

1`

bw~b!db, ~33!

^b&5^S0&E
0

1`

bw~b!db5
r

2
^b&0 , ~34!

where^b& may also be considered as the mean volume^V&
of a fracture per unit area.

^b&0 can be derived from~26!

^b&05bm1S 2p D 1/2 dsb*

r
, d5expS 2

bm
2

2sb*
2D . ~35!

The statistical averageŝb&0 and ^b& can be directly calcu-
lated from the numerical realizations ofb at one node. In
practice, thanks to ergodicity, one can estimate^b&0 or ^b& as
the spatial averagesb̄0 and b̄ , defined as

b̄5
1

A E
A
b~r !ds, ~36!

b̄05
1

A0
E
A
b~r !ds. ~37!

These estimations vary from one realization to another with
variancess~b̄0!

2 ands(b̄)2, which can be found in the same
way assS0

2 . The variances(b̄)2 can be derived from the joint

distributionw(w1 ,w2) of two Gaussian variables in the limit
l /L!1 andbm /sb*!1,

s~ b̄!25^b̄2&2^b&25S lL D 2FZ32S bmsb*
DZ4G , ~38!

whereZ3 andZ4 depend only onH. The estimation ofs~b̄0!
2

may be written as

s~ b̄0!
25

4

r2
s~ b̄!2. ~39!
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Figure 5~a! shows^b&0 and^b& vs bm . All the numerical
estimates are in good agreement with the theoretical predic-
tions.

The formula~38! shows the influence of the sample size
on the dispersion of the spatial averageb̄ around the statis-
tical averagê b&. The theoretical predictions given by~38!
are in good agreement with the numerical estimations in
Table I.

Equations~29! and~34! yield a relation between̂S0&, ^b&,
and^b&0. Figure 5~b! shows^b&&/sb as a function of̂Sc&,
wheres b

2 is the variance ofb over the fracture plane

sb
25^b2&2^b&25

r

2
~bm

2 1sb*
2!1

dbmsb*

A2p
2^b&2. ~40!

The standard deviationsb is used instead of the model pa-
rametersb* because it can be estimated directly in experi-
ments. The dependencesbm&/sb* and ^b&0&/sb0 on ^Sc&
are presented in Fig. 5~b!.

When the fractional contact areasSc are small~Sc,0.01!,
the ratio ^b&&/sb rapidly varies withSc . In this range of
parameters,Sc depends on the distribution of the highest
asperities of the fracture surfaces, which correspond to the
tail of the height probability densityw(h) ~4!; henceSc is
expected to vary largely from one fracture sample to another.

For large Sc ~Sc.0.2! the ratio ^b&&/sb decreases
slightly with increasingSc . This means thatSc is sensitive to
the minimal nonzero aperture that can be measured in the
experiment. The ratiôb&&/sb is larger than 1 forSc,0.48,
while the parameterbm&/sb* tends to 0 whenSc approaches
0.5.

For comparison purposes, the experimental data are pre-
sented in the same plot. The first two data sets of Hakami
@14# were obtained by two different types of measurements
of the aperture distribution in a single fracture within a
quartz sample. The third one was presented by Hakami and
Larsson @26#. Two data points represent the experimental
results of Gale@15#. Good agreement between all experimen-
tal data and the theoretical predictions of the theory was
obtained. It should be noted that the data of Hakami and
Larsson@26# for fracture with smallSc are scattered around
the theoretical curve; this can be explained by the sensibility
of Sc to the distribution of the highest surfaces asperities,
which varies substantially from one fracture sample to an-
other, as already mentioned.

IV. DISTRIBUTION OF CONTACTS
BETWEEN FRACTURE SURFACES

Mechanical properties of real fractures mostly depend on
the distribution of contacts between fracture surfaces and
their area. The number of contacts and the mean area of a
contact zone are analyzed as well as the number of closed
zones with nonzero aperture for simulated fracture surfaces
with various values of correlation distances. Before the simu-
lation results are discussed, some theoretical concepts are
presented.

A. Theory

The numberNc of contacts or the numbernc of contacts
per areal 2 for two surfaces@cf. ~19!# with normally distrib-
uted heights can be considered as the number of zones where
the Gaussian random fieldF5bm2w with zero mean and
standard deviationsb* has valuesF.bm . If F is a two-
dimensional field, the number ofNF of zones withF.u in a
set A may be estimated from the value of the differential
topology characteristicNx of F @20#. Briefly, Nx is

Nx5x12x0 , ~41!

wherex1 andx0 are the total number of points (x,y)PA that
satisfy @see Fig. 6~a!#

x1 : F5u, Fx850, Fy8.0, Fxy9 ,0;
~42!

x0 : F5u, Fx850, Fy8.0, Fxy9 .0.

FIG. 5. Mean fractional void areâS0& @solid line; Eq.~29!#, the
mean aperturêb& @dashed line; Eq.~34!#, and the mean aperture
^b&0 @dotted line; Eq.~35!# of a fracture as functions ofbm/sh .
Data are forl /a51.25,NL540, andH50.5 ~3!; l /a54, NL580,
andH51 ~s!. The numerical data are given by~3 ands!. ~b!
Ratio ^b&&/sb ~solid line! as a function of the mean fractional
contact areâSc&. The dotted line corresponds tobm&/sb* and the
dashed one tôb&0&/sb0. The experimental data of Hakami@14#
are denoted bys ~drill core sections measurements! and3 ~bore-
hole photographs!. The data of Hakami and Larsson@26# and Gale
@15# are denoted by* and1, respectively.
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Equation ~41! gives the number of connected contact
zones of finite extent that do not contain any void area or are
not part of a contact zone of infinite extent. If any contact
zone contains some ‘‘holes,’’ each hole lowersNx by 1 @Fig.
6~b!#. The outer boundary of a periodic infinite contact zone
does not contribute toNx @Fig. 6~c!#.

Generally,Nx , Nc , andN0 are related by

Nx5~Nc2Nc
`!2~N02N0

`!, ~43!

whereNc
` andN0

` are the numbers of contact zones and of
void areas of infinite extent. It is clear that

Nx<Nc ~44!

and the formula~41! provides a lower bound of the contact
numberNc .

The differential topology characteristicNx of the fracture
space is also related to the Betti numbers of the void zone
and of the contact zone of the fracture~Fig. 7!. The void
zone of the fracture can be reduced to a topologically equiva-
lent network of edges and vertices. This network or graph is
composed of some connected components whose number is
called the zeroth Betti numberb0~A0!. The first Betti number
b1~A0! ~or the cyclomatic number of the void zone! is equal
to the number of independent cycles of the graph

b1~A0!5Ne2Nv1b0~A0!, ~45!

whereNe andNv are the number of edges and vertices of the
graph, respectively. It is obvious that any independent cycle
of finite extent encloses one finite isolated contact zone~cf.
the cycleABEA in Fig. 7! and that the numbers of these
finite cycles and of those finite contact zones are always
equal.

FIG. 6. ~a! Differential topology characteristicNx of the shadowed contact zone.x158, x052, Nx56, andNc56. ~b! Contact zoneC1
contains two isolated void zonesV1 andV2. x154, x053, Nx51, andNc53. ~c! Infinite contact zoneC bounded by the infinite line
L. x152, x052,Nx50, andNc51. ~d! Configurations that contribute to the discrete analog of the differential topological characteristicNx .
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If a void zone of infinite extent exists, it contains one
infinite cycle at least~see the cycleABCDA in Fig. 7!. The
correspondence between the numbers of infinite independent
cycles and of contact zones of infinite extent depends on the
topological structure of the fracture space. If a contact zone
and a void zone of infinite extent exist, each contact zone
may be enclosed by one and only one independent cycle of
the graph of the void zone. When all contact zones are finite,
the infinite cycle of this graph does not correspond to any
contact zone. In the opposite limit where only finite void
zones exist, the corresponding graph consists of some num-
ber of finite cycles and the Betti numberb1~A0! is equal to
the number of isolated contact zones that are located within
the finite void zones.

In general, the total number of contactsNc is related to
the Betti numberb1~A0! of the graph of the void zone of the
fracture by

Nc5b1~A0!2N0
`1Nc

` . ~46a!

A relation dual to~46a! can be derived for the numberN0 of
void zones and the first Betti numberb1(Ac) of the graph of
the contact zone of the fracture

N05b1~Ac!2Nc
`1N0

` . ~46b!

In order to obtain a relationship betweenNx and the Betti
numbers of the graphs of void and contact zones of the frac-
ture, Eq.~43! can be used. It is obvious that the numbersNc

`

andN0
` of contact zones and void zones of infinite extent are

equal to the numbersb0
`(Ac) andb0

`~A0! of connected infi-
nite components of the corresponding graphs. Finally,Nx is
expressed as

Nx5b1~A0!2b1~Ac!2b0
`~A0!1b0

`~Ac!. ~47!

In ~46! and~47!, it is assumed that any finite contact zone
~void zone! is enclosed in a cycle inA0 (Ac). In particular,
these results do not apply when neitherA0 norAc percolates.

Consider the case when only one percolating void zone
exists. The number

N0
c5N02N0

`5N021 ~48!

in ~43! is equal to the number of isolated void zones that
correspond to the closed porosity of the fracture. The first
termNc2Nc

` in ~43! is the number of isolated contacts. If
the fracture is far from the percolation threshold, most con-
tacts are contained in the infinite void zone andNc2Nc

` is
close tob1~APC!, the cyclomatic number of the percolating
cluster. Finally,

Nx>b1~APC!2N0
c . ~49!

According to Adler@20#, the averagêNx& overA is given by

^Nx&'
m~A!AuDu

~2p!3/2
u

sT
3 expF2

u2

2sT
2G ,

D5H ]2CF

]x2
]2CF

]y2
2S ]2CF

]x]y D
2J

x,y50

, ~50!

wherem(A) is the area ofA. If the spatial correlation is
given by the Gaussian covarianceCw ~14!, the random field
w will be almost surely continuous, together with its partial
derivativesD5(2sb* )

2 andm(A)5(L/ l )2; ^Nx& can be de-
duced from~50!,

^Nx&5S Ll D 2 bm

pA2psb*
expF2

bm
2

2sb*
2G . ~51!

B. Comparison with numerical data for Gaussian fractures
„H51…

Figure 8 shows results of numerical computations of the
contact numbernc for an areal

2 when the sample sizeL/ l is
varied. It is found that for a fixed value of the discretization
ratio a/ l , nc approaches some limit valuen c

` whenL/ l→`.
In each series of calculations with fixeda/ l , the variations of
nc aboutn c

` do not exceed 10% whenL/ l>10. The statisti-
cal variations ofnc increase if the mean sizeDc of a contact
zone approaches the sample size. Table II contains the rela-
tive standard deviationsnc

/nc of the contact number and the
inverse mean size of a contact zone obtained numerically as
Dc5ASc /nc, for various values ofbm/sh and fixedL/ l . It
can be seen that whenl /Dc approachesl /L50.05, the statis-
tical variance of the contact number increases.

Figure 8 shows that the limit valuen c
` varies with the

discretization ratioa/ l . In order to analyze the influence of
a/ l , the contact numbernc is plotted in Fig. 9 for a fixedL/ l
as a function ofa/ l . It is clear that for a large enough sample
size L/ l520 ~curve 3!, nc rapidly approaches some limit
value n c

0. In the caseL/ l55 ~curve 1!, nc diverges with
decreasinga/ l due to a too small sample size that is compa-
rable to the contact zone mean sizeDc'5l ~see Table II!.
The variations ofn c

0 obtained by a linear extrapolation of the
numerical results~see Fig. 9! with fixed L/ l and decreasing

FIG. 7. Graphs of the void~bold lines! and contact~thin lines!
zones of the fracture. Contact zones are shadowed.
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a/ l are illustrated in Table III. It can be seen that, when the
sample sizeL/ l is increased,n c

0 tends toward 0.031. Table
III and Fig. 8 show that sample size effects disappear for
L/ l>20. The limit valuesn c

` andn c
0 obtained in numerical

simulations differ from the theoretical predictions given by
~51! only for bm/sh→0, as can be seen in Fig. 10.

The difference between̂Nx& and ^nc& can be explained
by using the formula~43!. Whenbm/sh@1 the numberN 0

c

of isolated void zones vanishes,Nc
`50, the ratio

(N02N 0
`1Nc

`)/Nc tends to 0, andNx approachesNc . In
the limit bm/sh50, the ratio (N02N 0

`1Nc
`)/Nc is finite and

the termN02N 0
`1Nc

` cannot be neglected in~43!. It means
that for low bm/sh the formula~51! cannot be used for the
estimation of̂ nc&.

It may be concluded that forbm/sh>0.7, ^Nx& as de-
rived from ~51! gives a good approximation for^nc&, while

for bm/sh<0.7, the difference between~51! and the esti-
mated value of̂ nc& increases with decreasingbm/sh . An
increase of the sample sizeL/ l does not decrease this differ-
ence.

C. Numerical data for self-affine fractures „H<1…

Because of the fractal character of these fractures, a dif-
ferent asymptotic behavior is expected. The convergence of
nc whenL/ l is increased is illustrated forH50.5 in Fig. 11.
It can be seen thatnc reachesn c

` more rapidly than in the
caseH51 ~Fig. 8!. A good estimation ofn c

` can be obtained
with L/ l>5, instead of 20 forH51.

Another obvious difference between the casesH50.5 and
1 is that forH50.5,nc strongly depends on the discretization
ratioa/ l for fixedL/ l . Figure 12 displays a log-log plot ofnc
as a function ofl /a for a fixed ratioL/ l and various values of
H. The number of contactsnc was found to be approxi-

FIG. 8. Contact numbernc for an areal 2 as a function of the
ratio l /L of the correlation distancel and of the sample sizeL for
fixed values ofa/ l . Data are forH51, bm/sh50.2,a/ l50.125~1!,
0.25 ~2!, 0.5 ~3!, andbm/sh51, a/ l50.125 ~4!. The dashed lines
correspond to the theoretical values given by Eq.~51!. The number
of realizations isNr5100 for the smallestl /L and 200 for the
largest one.

TABLE II. Mean area of a connected contact zoneSc/nc , the
inverse mean size of a contact zoneDc5ASc /nc, and the relative
standard deviation of the contact numbersnc

/nc as functions of
bm/sh . Data are forH51, L/ l520, andl /a58. The estimations are
derived from Eqs.~27!, ~29!, and~51!.

bm/sh

Sc/nc l /Dc5 lAnc /Sc shc
/nc

calculatedcalculated theory calculated theory

0.0 25.51 ` 0.20 0 0.39
0.1 20.07 52.68 0.22 0.14 0.41
0.2 15.82 24.96 0.25 0.20 0.36
0.4 9.58 11.26 0.32 0.30 0.29
0.6 6.08 6.82 0.41 0.38 0.20
0.8 4.39 4.67 0.48 0.46 0.17
1.0 3.20 3.43 0.56 0.54 0.15
1.4 2.08 2.09 0.69 0.69 0.12
2.0 1.13 1.19 0.94 0.92 0.13

FIG. 9. Contact numbernc as a function of the discretization
ratio a/ l for H51, bm/sh50.2, and a fixed value ofl /L. Data are
for l /L50.2 ~1!, 0.1 ~2!, 0.05 ~3!, and 0.025~4!.

FIG. 10. Contact numbernc as a function ofbm/sh . Data are
for H51, a/ l50.125, andl /L50.05 ~s!, 0.04 ~3!; H50.5, a/ l
50.8, andl /L50.031 25~* !. The solid line corresponds to Eq.~51!
for Nx .
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mately constant only forH51. It can be seen thatnc follows
a power law

nc}S laD
s

. ~52!

The exponents depends uponH and uponbm/sh , as shown
in Fig. 13.

In order to estimates, consider the discrete analog of the
differential topology characteristicNx ~41!, wherex1 andx0
are the total numbers of nodes (xi ,yj ), which satisfy@see
Fig. 6~d!#

x1 : F~xi ,yj !>u, F~xi11 ,yj !,u, ~53!

F~xi ,yj21!,u, F~xi11 ,yj21!,u;

x0 : F~xi ,yj !>u, F~xi11 ,yj !>u,

F~xi ,yj21!>u, F~xi11 ,yj21!,u.

This can be easily related to Fig. 6~a! when Fig. 6~d! is
rotated by an angle of2p/4.

The mean numberŝx1& and ^x0& can be estimated as

^x1&5S LaD 2P1 , ^x0&5S LaD 2P0 , ~54!

whereP1 andP0 are the probabilities of the configurations
displayed in Fig. 6~d!. The probabilitiesP1 andP0 are ex-
pressed by using the joint probability of the four Gaussian
correlated variablesx, y, z, andt:

P15E
u

1`

dtE
2`

u

dxE
2`

u

dyE
2`

u

f ~x,y,z,t !dz, ~55!

P05E
u

1`

dtE
u

1`

dxE
u

1`

dyE
2`

u

f ~x,y,z,t !dz,

TABLE III. Extrapolated values of the contact numbernc
0 in the

limit a/ l→0 for variousL/ l . Data are forH51 andbm/sh50.2.

L/ l n c
0

10 0.0350
20 0.0308
25 0.0302
30 0.0296
40 0.0306

theory 0.0178

FIG. 11. Contact numbernc as a function ofl /L for H50.5 and
fixed a/ l . Data are forbm/sh50.2 anda/ l50.0625~1!, 0.125~2!,
and 0.5~3!.

FIG. 12. Contact numbernc as a function ofl /a for bm/sh50.2,
Nr5100, l /L50.05, and various values ofH. The straight lines are
the mean-square fits. The error bars represent the standard deviation
interval for the mean value.

FIG. 13. Scaling exponents~s! for the contact numbersnc and
m ~3! for the cyclomatic numberb1~Apc! as functions ofH for
bm/sh50.2. The solid line corresponds to~58!, the dashed line to
~57!. ForH50.5, data are forbm/sh50.4 ~a!, 0.6 ~b!, and 1~c!.
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f5H 4p2~12g2
2!F12S 2g1

11g2
D 2G1/2J 21

3expH 2

~x1y!22
4g1

11g2
~x1y!~ t1z!1~ t1z!2

4~11g2!F12S 2g1

11g2
D 2G

2
~x2y!21~ t2z!2

4~12g2! J ,

t5F~xi ,yj !, x5F~xi11 ,yj !,

y5F~xi ,yj21!, z5F~xi11 ,yj21!,

g15

CwS al D
sb*

2 , g25

CwS& a

l D
sb*

2 .

All the integrals in~55! can be estimated in the limita/ l→0,
and the averagêx12x0& per unit area is given by

^x12x0&'S al D 222H 2H21bm

pA2psb*
expF2

bm
2

2sb*
2G . ~56!

In the limitH51, this formula is identical to~51!. According
to ~56!, the scaling exponents is

s5222H. ~57!

This dependence is presented in Fig. 13. The comparison
with the numerical results show that~57! provides an esti-
mate that is systematically too low. It should be recalled that
the topological characteristicNx only gives a lower limit of
the contact number according to~44!. This is especially im-
portant forH,1, where the generated surfaces are self-affine
fractals ~on scalesx, l ! and their cross sections are also
fractals@31#. One may suppose that with decreasing values
of a/ l , the number of holes in the contact zones increases as
well as the difference betweenNc andx12x0.

Whitehouse and Archard@25# measured the numberNp of
peaks detected on a given length of a random surface profile
by using various sampling intervalsa/ l . They found that for
the profiles with normally distributed heights and the expo-
nential covariance~13!, Np was inversely proportional to
a/ l . The scaling law~52! with the exponents given by~57!
for H50.5 also predicts thatnc varies as (a/ l )

21.
The relation~52! is a consequence of the fact that for

H,1 the fracture surfaces are self-affine objects. A horizon-
tal section of the surface defines coastlines that are self-
similar fractals with a fractal dimension@31#

dc522H. ~58!

Mandelbrot@34# showed that in a plane section, the number
of islands having an area greater than a prescribed sizel
varies asl2dc. The relation~58! is also displayed in Fig. 13.

D. Connectivity of percolating fractures

The number of contactsNc is related to the cyclomatic
numberb1~A0! of the graph of the void volume of a fracture
by ~46!. Let us consider another topological characteristic of
this volume, namely, the cyclomatic numberb1~APC! of the
percolating cluster of the fracture@cf. ~25!#.

In order to analyze the structure of percolating clusters for
each realization of the fracture space, the two-dimensional
aperture field is reduced to a graph by a method of condi-
tional thining@32#. Some examples of such graphs are shown
in Fig. 2. The graph can be characterized by the numberNe
of edges and the numberNv of junctions~or vertices!. When
Ne andNv are known, it is easy to calculateb1~APC! ~also
shortened asb1! from ~25!.

Figure 14 displayŝb1l
2/A&p and^nc&p vs l /a for H50.5

and 1, wherê nc&p is only averaged over the percolating
realizations of the fractures. The main observation is that the
cyclomatic numberb1 is close to the total contact number
Nc . This means that most contacts between two fracture sur-
faces are in the interior of the percolating cluster~if it exists!
and that only a small number of contacts is distributed within
closed parts of the void volume of the fracture.

As can be seen from Fig. 14, the cyclomatic numberb1 is
given by the power law

^b1&p
l 2

A
;S laD

2m

, ~59!

where the exponentm depends uponH andbm/sh . Figure
13 displaysm calculated for variousH together with the
exponents; it is obvious that^b1l

2/A& and ^nc& obey the
same scaling law.m is a decreasing function ofbm/sh ; the
values ofm are very close to the corresponding values ofs.

V. STRUCTURE OF PERCOLATING CLUSTERS

When the separationbm between the two surfaces in-
creases, the total void fracture area grows; whenbm is larger
than a certain critical value, most of this surface is connected

FIG. 14. Mean cyclomatic number^b1l
2/A&p ~solid lines! and

the mean contact number^nc&p ~dashed lines! averaged over per-
colating fractures as functions ofl /a for bm/sh50.2, l /L50.05,
andNr5100.
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over the entire fracture plane and forms a percolating cluster.
For finite samples of simulated fractures, various criteria can
be chosen to determine whether or not a fracture is percolat-
ing @32#. Here a cluster is defined as percolating if a fluid can
pass through it from one end to another. For a spatially pe-
riodic system, a cluster is percolating if all its homologous
points can be connected through the cluster.

A. Percolation threshold

In order to analyze the percolating probability of fractures
with random surfaces for each value of the parameters of the
model,Nr realizations were generated and the percolation
probabilityP was defined as the fraction of realizations that
contain a percolating cluster. The method used here to search
for percolating and connected components of the void vol-
ume of a fracture is a modification of the method derived by
Thovert, Salles, and Adler@32# for the characterization of the
geometry of real porous media. Each node (xi ,yj ) is sup-
posed to be connected with the first nearest neighbor in thex
or y direction, but not with the second nearest neighbors
(xi61,yj61). First, connected components are determined,
which contain nodes withb.0 that can be continuously con-
nected through the cluster; then, nonpercolating clusters are
eliminated by means of a pseudodiffusion process.

Thus the percolation of a fracture volume is considered
here as a correlated site percolation problem with a site-
occupation variableBi defined on the discrete grid according
to ~28b!. The site-occupation probability is equal to the mean
value ^S0& given by ~28c!. The spatial correlation ofw(x,y)
induces correlations of the occupation variablesBi . A simi-
lar approach to the correlated site percolation was developed
by Prakashet al. @35#, who considered normally distributed
correlated fields converted to corresponding discrete corre-
lated occupation variables.

1. Uncorrelated fields

The percolation probabilityP is analyzed as a function of
the distancebm/sh of the discretization ratioa/ l and of the
sample sizeL/ l . First,P is calculated for uncorrelated fields
l50 to analyze the influence ofNL5L/a.

Figure 15 shows variations ofP with bm/sh for various
values ofNL . The probabilityP increases monotonically
from 0 to 1 whenbm/sh increases. The transition zone de-
creases whenNL increases; it should be a step function for
infinite NL .

The finite-size scaling method may be used in order to
determine the percolation thresholdPc @36#. P(S0) is tenta-
tively fitted by a two-parameter error function

P5
1

2p E
2`

S0 1

D
expH 2

~j2Pav!
2

2D2 J dj, ~60!

wherePav is the average concentration andD is the width of
the transition region@22#. The percolation thresholdPc is the
limit for Pav when the sample sizeNL tends to infinity. The
critical exponentn andPc can be derived by using the scal-
ing laws @22#

Pav2Pc;NL
21/n , ~61a!

D;NL
21/n . ~61b!

Figure 16~a! shows a log-log plot ofD vs NL for a clas-
sical uncorrelated site percolation. Error bars are estimated
by comparingPav andD found with successive data points
removed from the set (P,S0). The linear fit givesn51.35
60.02, which is close to the theoretical value 1.333. The
percolation thresholdPc estimated by extrapolation of~61a!
givesPc50.5960.04, which is also close to the theoretical
prediction 0.592 75@Fig. 16~b!#.

2. Correlated fields

The influence of the spatial correlations in the distribution
of site-occupation variableBi on the percolation threshold
Pc was studied by various models@37,38,37,39,40#. Prakash
et al. @35# and Sahimi@40# studied two-dimensional lattices
with the site-occupancy variableBi obtained by using ran-
dom Gaussian fieldsui , which are described by correlation
functions with ferro-type and antiferro-type correlations, re-
spectively. The spatial correlations were introduced by using
a power-law correlation functionCu;r221l, 22,l,2
@35#, and by generating a fractional Brownian motion with
Cu;12r 2H, 0,H,1 @40#. The systems with ferro-type cor-
relations, when the neighbor of an occupied site prefers to be
occupied, are represented in these models byl.0 and
H. 1

2, respectively; the percolation threshold of such systems
was shown to systematically decrease if the degree of spatial
correlations, characterized byl andH, increases.

Coniglio et al. @39# considered percolation in continuum
systems using a Ising model of ferromagnets. A ferromag-
netic interaction among particles introduces a spatial corre-
lation that depends upon temperature. When temperature
tends to infinity, the percolation threshold tends to the same
threshold as for uncorrelated systems. Near but above the
critical temperature, the correlation length of the system di-
verges and the percolation threshold tends toward1

2.
Weinrib @38# studied the percolation thresholds of a two-

dimensional continuum system whose site-occupation vari-
able B~x! is zero for uA~x!u2,I * and one foruA~x!u2>I * ;

FIG. 15. Percolation probabilityP as a function ofbm/sh for
correlated~solid lines! and uncorrelated~dotted lines! fields. Data
are for a/L50.0167 ~s! and 0.01~3!. The correlated fields are
generated withH50.5, l /a52.
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A~x! is a homogeneous, isotropic complex Gaussian random
variable defined over the plane. He analyzed random fields
on a discrete lattice with the Gaussian correlation function
^A(0)A* ~x!&5I 0 exp~2x2/2l 2! with l /a58. The percolation
threshold of such a system was found atI * /I 050.519, which
corresponds toPc50.405; this value is less than for a purely
uncorrelated systemPc'0.59. It should be noted that this
threshold differs from1

2, valid for many two-dimensional
continuum systems with statistically equivalent conducting
and insulating regions.

An analysis of the ‘‘annealed percolation model’’@41#,
cubic resistor networks with correlated bonds@41#, and per-
colation on random lattices@42# also showed thatPc is a
decreasing function of the degree of spatial correlation
within a percolating system. By using the technique of finite-
size scaling, the percolation thresholdPc is analyzed here for
correlated fields described by the correlation function~15!.
In this technique, the calculation ofPc follows the determi-
nation of the correlation-length exponentn, but a detailed
discussion of the results concerningn will be presented in

Sec. V B. The influence of two parameters onPc is studied,
namely, the discretization ratioa/ l and the roughness expo-
nentH.

The influence of spatial correlations on the percolation
probability P is illustrated in Fig. 15. One can see that the
transition regionD is larger for correlated systems than for
uncorrelated ones.

The two limits a/ l@1 and a/ l!1 correspond to two
known situations, i.e., purely uncorrelated systems with
Pc50.59 and continuum systems withPc51/2 @38#. H has
an effect similar to the Hurst exponentH in the model con-
sidered by Sahimi@40#, because the correlation function~15!
approximates 12(r / l )2H at r / l!1. In order to find the per-
colation thresholdPc and the exponentn, Pav and D are
calculated as functions ofL/ l for fixed ratiosa/ l . Figure 17
presents an example of numerical estimation ofPc andn for
H51 and 0.5 anda/ l50.25. A trial value ofPc is used in
order to obtain the best linear approximation of the log-log
plot of Pc2Pav vs L/ l ; then,Pc is varied until a minimum
mean-square difference between the linear fit and the nu-

FIG. 16. ~a! Width D of the transition region as a function of the
sample sizeL/a for uncorrelated fields. The solid line corresponds
to the linear fit of the numerical points withn51.3460.02. ~b!
Averaged concentrationPav as a function of the sample size
(L/a)21/n for uncorrelated fields. Data are forn51.337. The linear
fit ~solid line! gives an extrapolated percolation threshold~dotted
line! Pc50.5960.04.

FIG. 17. ~a! Width D of the transition region as a function of the
sample sizeL/ l for correlated fields. Data are fora/ l50.25. The
solid lines are the least-squares fits of the numerical data points.
The number of realizations isNr5800 for L/ l515 and 200 for
L/ l575. ~b! DifferencePc2Pav as a function of the sample size
L/ l for correlated fields. Data are fora/ l50.25. The solid lines are
the least-squares fits of the numerical data points.
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merical data is obtained. The finite-size scaling~61! gives
Pc'0.50760.001 for H51 and 0.53860.002 for H50.5.
The errors inPc are estimated by successive removals of the
data points from the set~Pav,L/ l !.

Figure 18 and Table IV provide the functionPc(a/ l ) cal-
culated for two values ofH. In both cases,Pc is an increas-
ing function ofa/ l . The percolation thresholdPc , calculated
at a/ l54 for H50.5, is equal to 0.590160.0002, which is
very close to the value of classical uncorrelated systems.

In the opposite limitea/ l→0, linear extrapolations of the
trends forPc(a/ l ) givePc0'0.52760.009 and 0.50360.002
for H50.5 and 1, respectively. Both values are close toPc5
1
2, which is valid for continuum systems. It should be noted
that it is difficult to analyze the case of smalla/ l , because the
mesh sizeNL , which corresponds to a given effective sample
sizeL/ l , increases with decreasinga/ l . The mesh sizeNL is
limited by computer time and memory and did not exceed

500, so only a relatively small range ofL/ l has been ex-
plored for smalla/ l .

A comparison ofPc for H50.5 and 1 shows that it is
smaller in the latter case; this agrees with the results of Sa-
himi @40#, who found thatPc decreases withH. The perco-
lation thresholdsPc50.5 and 0.59 correspond to the mean
contact areasSc50.5 and 0.41, respectively. Bandis, Lums-
den, and Barton@43# measuredSc of various rock fractures
under a normal load by inserting a thin plastic sheet between
the interlocked joint walls; they found thatSc ranged be-
tween 0.4 and 0.7 for various samples at the largest pres-
sures. Similar results were obtained by Gentier@2#. The resin
injection in the fracture space under a normal load performed
by Gale @15# gaveSc50.17–0.18. Witherspoonet al. @44#
measuredSc as 0.1–0.2 for granite samples and 0.25–0.35
for marble samples. Taking into account that the measure-
ments using plastic films may overestimateSc , one can see
that the percolation threshold can be reached only at very
high normal loads. This agrees with the fact that in most
experimental works fractures remained open for fluid flow
even at large pressures@2,15,44#.

It would be interesting to use the percolation methods in
the study of the hydromechanical behavior of fractures near
the percolation threshold. It was shown@44# that the mean
fracture aperturêb& and the hydraulic onebh estimated dur-
ing flow experiments are linearly related. This dependence is
valid only at small and modest normal stresses. There are
some experimental observations at large pressures@45#,
wherebh was found to decrease witĥb& more rapidly than
the linear dependence predicts. Pyrak-Nolte, Cook, and
Nolte @46# attributed these deviations from the linear depen-
dences betweenbh and ^b& to the behavior of the critical
neck or the point of the smallest aperture along the flow path.
This approach can be combined with standard methods of the
percolation analysis@22# of the macroscopic conductivity
near the percolation threshold in order to obtain the corre-
sponding critical exponents and to compare them with the
ones found in experiments. However, such an analysis is
outside the scope of the present paper.

3. Analytical models

The existence of a diverging length scale in a percolating
system near the percolation threshold provides the possibility
of using the renormalization transformation in order to ob-
tain the critical parameters@47,36,48#. The technique is
based on the fact that the initial percolation system and the
transformed one, whose sites replace finite cells of the initial
lattice according to some cell-to-site transformation rule, dis-
play the same percolation properties. The spatial correlation
of the site occupancy directly introduced in the system
changes the situation. The properties of the percolation sys-
tem at scales larger than the correlation distancel are ex-
pected to be similar to uncorrelated systems, but at small
distances they depend on the correlation function, even near
the percolation threshold. This means that the occupation
probability of the renormalized site with sizea1 larger thanl
differs from that witha1, l and the search for the fixed point
of the renormalization transformation cannot give true value
of Pc .

However, the renormalization procedure can be directly
used in order to estimate global properties of the correlated

FIG. 18. Percolation thresholdPc as a function of the discreti-
zation ratioa/ l . The solid lines are the least-squares fits of the
numerical data points. Data are forH50.5 ~s! and 1~3!.

TABLE IV. Percolation thresholdPc and the critical exponentn
as functions of the discretization ratioa/ l for H51 and 0.5.

a/ l Pc n

H51
extrapolation 0.503~0.002!

0.0625 0.505~0.007! 1.62 ~0.01!
0.1250 0.509~0.002! 1.43 ~0.04!
0.2500 0.507~0.001! 1.38 ~0.03!
0.5000 0.519~0.001! 1.35 ~0.04!
1.0000 0.5519~0.0007! 1.34 ~0.04!

H50.5
extrapolation 0.527~0.009!

0.0625 0.539~0.004! 1.61 ~0.04!
0.1250 0.519~0.002! 1.36 ~0.01!
0.2500 0.538~0.002! 1.30 ~0.04!
0.5000 0.547~0.001! 1.33 ~0.02!
1.0000 0.569~0.002! 1.41 ~0.06!
4.0000 0.590~0.001! 1.37 ~0.09!
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systems@49#. It was shown that successive recalculations of
permeabilities of a network with a small size unit cell to that
with a larger one give the best global permeability estimate
when compared to conventional averaging techniques, such
as the geometric mean.

The fact that a correlated system should have the same
critical parameters as an uncorrelated one at scales larger
thanl is used here in order to estimate the percolation thresh-
old Pc in the limit a/ l→0. If a renormalized site has a size
a1. l , it can be considered as a site of an uncorrelated per-
colating system with the known ‘‘global’’ percolation thresh-
old Pc'0.593. One can use a Monte Carlo renormalization-
group procedure@36# to calculate a local site occupation
probability Pc loc , for which the fraction of large-scale per-
colating cells is equal toPc . Pc loc will be referred to as a
‘‘local’’ percolation threshold.

A series of random correlated fields is generated on a grid
of sizeL0/ l54 and a squareL/ l52 is cut from each sample.
A percolation probability is calculated for various site prob-
abilitiesS0. The procedure that was used for large-scale per-
colation analysis is applied here to find the average concen-
tration Pav and the width D. Using formula ~60!, the
percolation thresholdPc loc is calculated.

A rule is chosen in order to decide whether or not a large
cell is occupied. The renormalized cell is occupied if it per-
colates at least in one direction. Figure 19 showsPc loc vsa/ l
calculated forH51 and 0.5. It was difficult to avoid statis-
tical errors in the estimation ofPc loc even with a relatively
large number of realizations~more than 1000 fora/ l.0.2!.
But, the trend is obvious;Pc loc decreases witha/ l and tends
toward a limit for smalla/ l .

The functionsPc loc (a/ l ) are fitted by linear functions
and the limits fora/ l→0 are estimated by extrapolation.
Table V contains these limit values together withPc loc cal-
culated fora/ l50.025. The valuesPc loc , which are found
by using the second rule~percolation in 1 direction!, are
close to the ones found in the global analysis~see Table IV!.

In both cases, the percolation threshold is less forH51 than
for H50.5.

This approach implies that all sites in a large-scale sample
are independent, which indeed is not true. The validity of
these estimations may be analyzed by calculating the cova-
riance of percolation probabilityCp ,

Cp5
^PiPj&2^Pi&

2

^Pi&2^Pi&
2 , ~62!

where Pi51 if a cell percolates and 0 if not;Pi and Pj
correspond to two neighbor cells cut from the same sample
with L052L. Figure 20 showsCp calculated forH51 and
for the percolation along one direction. It is clear that within
statistical errors,Cp can be considered as almost constant
over a wide range of values ofS0, except close to 0 or 1. For
a/ l50.5, the covarianceCp is about 0.2 and increases up to
0.4–0.5 whena/ l decreases down to 0.05. This means that
the correlations between neighboring sites remain significant
and can influence the percolation thresholdPc loc . Calcula-
tions performed forH50.5 and for the percolation in two
directions show that the maximal value ofCp is not changed.

The covarianceCp decreases if the renormalized cells
have a sizeL/ l larger than 2. Figure 21 showsCp calculated

FIG. 19. Local percolation probabilityPc loc as a function ofa/ l
for H51 ~solid lines! and 0.5~dashed lines! for the percolation in
one direction and in two directions. Data are forL/ l52. The num-
ber of realizations isNr5100 for the minimuma/ l and 2000 for the
maximuma/ l .

TABLE V. ‘‘Local’’ percolation thresholdPc loc for variousH
and various percolation rules.

H Pc loc ~a/ l50.025! Pc loc ~a/ l50!

one direction
0.5 0.520 0.513
1 0.479 0.472

two directions
0.5 0.651 0.644
1 0.650 0.640

FIG. 20. CovarianceCp of the percolation probabilities as a
function of the ‘‘site’’ probabilityS0 for the percolation along one
direction. Data are forH51, Nr5100, andL/ l52. The solid line
corresponds tol /a52, the dashed line tol /a58, and the dotted line
to l /a520.
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for three successive values ofL/ l . ForL/ l54,Cp is less than
0.06 and such sites can be considered as uncorrelated.

B. The critical exponent n

Near the percolation thresholdPc , the connectivity length
jp , which is defined as the average root-mean-square dis-
tance between occupied sites belonging to the same finite
cluster@31#, diverges as@22#

jp;up2Pcu2n, ~63!

wheren is the critical exponent. It was shown that for vari-
ous percolation systems without any spatial correlation,n is
almost the same@36#.

However, there are some situations where long-range cor-
relations affect the critical properties. Weinrib@50# studied
the correlated percolation problem with a power law corre-
lation functionCB;r2a. He supposed that a uniform transi-
tion takes place across the system if the spatial variations of
(1/V)( iPVBi for different regionsV are small compared to
p2Pc ; he found that the scaling law~63! with the same
correlation exponentn as for pure random system is valid
only if a.2/n for two-dimensional percolation. Systems
with a,2/n exhibit a new critical behavior with

n*52/a. ~64!

Prakashet al. @35# used a Monte Carlo renormalization-
group calculation applied to a correlated percolation problem
with power-law correlations. They found that the calculated
n agrees with~64! for a.1. Fora<1, their values ofn were
lower than the predictions of~64!.

The study of the effect of the correlated percolation prob-
lem on systems whose occupancy variables are obtained by
fractional Brownian motion withCu;12r 2H showed that
for all H, the critical exponentn retains its value for uncor-
related systems@40#. The same result was obtained in the
analysis of annealed correlated percolation@39#.

The finite-size scaling method is applied here to the per-
colation problem in correlated systems with covariance func-
tionsCh(r ) given as power laws

Ch~r i !5sh
2H 1

2222a S r ia D 2a

, i51, . . . ,NL/2

1, i50,
~65!

wherea51 and 3. It can be shown that near the percolation
threshold the correlation functionCB'~2/p!arcsin(Ch/s h

2)
and decreases atr→` with the same exponenta asCh . The
critical exponentn is estimated by the error function, which
fits ~60! for numerical data and the power law~61b!. It was
found that n51.3560.02 for a53 and n52.2660.02 for
a51. One can see that the long-range spatial correlations in
the site occupations described by the power law~65! influ-
ence the critical behavior of the percolation system. The
valuen52.26 is larger thann52 given by~64!, which can be
explained by the high sensitivity ofn to statistical errors.

The same finite-size scaling method is used for the perco-
lation systems described by the covariance functions~15!.
The critical exponentn is calculated forH50.5 and 1 and
various values of the discretization ratioa/ l . One may expect
that the correlation systems with an exponentially decreasing
covariance function~15! have no long-range correlations and
exhibit the same critical behavior near the percolation thresh-
old as uncorrelated systems. Table IV presents values ofn
estimated forH50.5 and 1 and it can be seen thatn indeed
varies near its valuen51.333 for classical uncorrelated per-
colating systems. No substantial influence ofa/ l on n was
observed.

C. The critical exponentb

It is known that near the percolating thresholdS0;Pc ,
the mean fraction areâSPC& of the percolating cluster for
infinite systems depends on^S0& as

^SPC&;~^S0&2Pc!
b, ~66!

whereb is a critical exponent; for two-dimensional systems,
it is equal to

b5 5
36'0.139 ~67!

for all types of lattice structures with noncorrelated elements.
It is difficult to calculateb directly for correlated systems

because it is very sensitive to various factors. Instead ofb,
the finite-size scaling technique is used, which provides the
ratio b/n.

For finite lattices, the percolating cluster areaSPCdepends
not only onS0, but also on the size of the system. Near the
percolation threshold,̂SPC& for noncorrelated finite systems
of sizeL verifies @22#

^SPC&;L2b/nF~@^S0&2Pc#L
1/n!, ~68!

wheren is the critical exponent andF is a scaling function.
For fixed ^S0& and varyingL @so that (̂S0&2Pc)L

1n!1#,
^SPC& is proportional toL

2b/n; for two-dimensional lattices

b

n
5

5

48
'0.104. ~69!

FIG. 21. CovarianceCp of the percolation probabilities as a
function of the site probabilityS0 for the percolation along one
direction. Data are forH51 andL/ l52. The solid line corresponds
to L/ l52, the dashed line toL/ l54, and the dotted line toL/ l58.
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Figure 22 displays a log-log plot of^SPC& vs the system
size L/a for an uncorrelated lattice. The site occupation
probability is ^S0&'0.593. A linear fit givesb/n50.103
~0.01!, which is in good agreement with~69!.

For correlated fields, the following approach is used. The
discretization ratiol /a is fixed and the separationbm/sh is
chosen so that the site probability^S0& is equal to the perco-
lation thresholdPc for given l /a andH. Then,L/ l is varied
and ^SPC& is estimated. Figure 23 shows log-log plots of
^SPC& vs L/ l for H50.5 and 1 andl /a58. The ratiob/n is
derived from the slope of the linear fit of the numerical data.
Table VI presents values ofb/n for H50.5 and 1 and various
values of l /a. One can see that forH51 the ratiob/n is
almost the same as for uncorrelated lattices. In the case
H50.5,b/n increases slightly withl /a from 0.073 forl /a51
up to 0.13 forl /a58.

The difference betweenH50.5 and 1 can be explained if

one takes into account that the void zone of the fracture is a
fractal in the first case. This means that the scaling properties
of the percolating cluster near the percolation threshold may
be influenced by the internal geometric structure of a fractal.

For l /a51 andH50.5, it is found thatb/n is smaller than
the value given in~69!. This is surprising because one may
expect that whenl /a tends to 0, the system becomes uncor-
related. Hence these results show that the scaling properties
of the percolating cluster in correlated systems may depend
upon the form of the spatial correlation in site occupations.

D. The critical exponent g

Consider the average size of the void zonesZ0 defined by
Eq. ~24!. Near the percolation threshold,^Z0& depends on
^S0& as @22#

^Z0&;u^S0&2Pcu2g, ~70!

whereg is a critical exponent.
It is difficult to obtaing directly and again finite-size scal-

ing is used. The method is based on the expected scaling
behavior of^Z0&, which should increase withL/ l as

^Z0&;S Ll D
g/n

. ~71!

For fixed values ofl /a, Nr5200 realizations of correlated
fields were generated and the mean size^Z0& is calculated
and averaged over nonpercolating configurations. The ratio
g/n is calculated from a linear fit of the log-log plot of^Z0&
vs L/ l . Figure 24 displayŝZ0& as a function ofL/ l for un-
correlated fields estimated at^S0&50.593. A linear fit of the
numerical data gives the ratiog/n51.88 ~0.05!, which is
close to the theoretical value

g

n
5
43

24
'1.7917. ~72!

Calculations of ^Z0& for correlated systems were per-
formed only for smalll /a. For largel /a ~.4!, the depen-
dence of^Z0& upon L/ l is significantly different from~71!
due to the statistical scatter of the numerical data and a cor-

FIG. 22. log-log plot of the strengtĥSPC& of the percolating
cluster in the noncorrelated lattice as a function of the lattice size
L/a for the site probabilityPc50.593. The solid line corresponds to
the linear fit of the numerical data.

FIG. 23. log-log plot of the strengtĥSPC& of the percolating
cluster in correlated systems as a function of the effective lattice
size L/ l for l /a58. Solid lines correspond to the linear fit of the
numerical data. Data are forH51, bm/sh50.06 ~s! andH50.5,
bm/sh50.13 ~3!.

TABLE VI. Critical exponentb and the ratiob/n for H50.5
and 1 and for variousl /a. The exponentb is derived from the ratio
b/n and the value ofn in Table IV.

a/ l b/n b

H51
0.1250 0.10~0.01! 0.15 ~0.02!
0.2500 0.12~0.02! 0.16 ~0.03!
0.5000 0.096~0.008! 0.13 ~0.02!
1.0000 0.099~0.008! 0.13 ~0.02!
4.0000 0.12~0.01! 0.16 ~0.02!

H50.5
0.1250 0.13~0.01! 0.18 ~0.02!
0.2500 0.11~0.01! 0.14 ~0.02!
0.5000 0.09~0.01! 0.12 ~0.02!
1.0000 0.073~0.007! 0.10 ~0.02!
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rect estimation of the ratiog/n was impossible. Forl /a51,
linear fits of log-log plotŝ Z0& vs L/ l gave the same ratio
g/n51.87~0.06! for bothH50.5 and 1. In the caseH51 and
l /a54, the valueg/n51.93 ~0.03! was found. Hence the nu-

merical analysis of the scaling behavior of the mean cluster
size ^Z0& does not reveal any influence of the spatial corre-
lations on the ratiog/n.

VI. CONCLUDING REMARKS

The geometry of simulated fractures has been analyzed by
using numerical and analytical methods. A fracture was pre-
sented as a space between two random surfaces described by
a normal probability distribution of heights and a spatial co-
variance function in the fracture plane. The numerical re-
sults, relative to the mean area of contacts between the sur-
faces of the fracture, the mean aperture, and the expected
number of contacts, have been successively compared to
analytical expressions for various values of the distance be-
tween the surfaces and of the correlation length. The mean
contact number for fractures with a spatially correlated
height profile distribution is found to depend on the discreti-
zation ratio according to a power law. It was shown that the
percolation threshold for the model of a fracture considered
corresponds to the site percolation on a square lattice. The
percolation threshold for a correlated system is smaller than
that in a pure random lattice. Near the percolation threshold,
the percolating cluster~which is formed by the open space of
the fracture! has fractal scaling properties and the critical
exponents for various values of the parameterH in the co-
variance function of the generated surfaces profile were es-
timated.
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published!.

@3# Y. W. Tsang and C. F. Tsang, Water Resour. Res.25, 2076
~1989!.

@4# S. B. Brown, J. Geophys. Res.92, 1337~1987!.
@5# H. Abelin, L. Birgersson, J. Gidlund, and I. Neretnieks, Water

Resour. Res.27, 3107~1991!.
@6# L. Moreno, Y. W. Tsang, C. F. Tsang, F. V. Hale, and I.

Neretnieks, Water. Res. Res.34, 2033~1988!.
@7# L. Moreno and I. Neretnieks, J. Contaminant Hydrol.13, 49

~1993!.
@8# Y. W. Tsang and P. A. Witherspoon, J. Geophys. Res.88,

2359 ~1983!.
@9# S. R. Brown and C. H. Scholz, J. Geophys. Res.91, 4939

~1986!.
@10# D. L. Hopkins, N. G. W. Cook, and L. R. Myer, inRock Joints

~Balkema, Rotterdam, 1990!, pp. 203–210.
@11# S. R. Brown, R. L. Kranz, and B. P. Bonner, Geophys. Res.

Lett. 13, 1430~1986!.
@12# S. R. Brown and C. H. Scholz, J. Geophys. Res,90 12 575

~1985!.
@13# E. Hakami and N. Barton, inRock Joints~Ref. @10#!, pp. 383–

390.
@14# E. Hakami~unpublished!.
@15# J. E. Gale~unpublished!.
@16# S. R. Brown, J. Geophys. Res.94, 9429~1989!.
@17# A. J. A. Unger and C. W. Mase, Water Resour. Res.29, 2101

~1993!.

@18# J. S. Y. Wang, T. N. Narasimhan, and C. H. Scholz, J. Geo-
phys. Res.93, 2216~1988!.

@19# F. Plouraboue´, P. Kurowski, J.-P. Hulin, S. Roux, and J.
Schmittbuhl, Phys. Rev. E51, 1675~1995!.

@20# R. J. Adler,The Geometry of Random Fields~Wiley, Chiches-
ter, 1981!.

@21# L. K. Barrett and C. S. Yust, Metallography3, 1 ~1970!.
@22# D. Stauffer and A. Aharony,Introduction to Percolation

Theory, 2nd ed.~Taylor and Francis, Bristol, 1994!.
@23# P. M. Adler, Porous Media: Geometry and Transports

~Butterworth/Heinemann, Stoneham, MA, 1992!.
@24# S. R. Brown and C. H. Scholz, J. Geophys. Res.90, 5531

~1985!.
@25# D. J. Whitehouse and J. F. Archard, Proc. R. Soc. London Ser.

A 316, 97 ~1970!.
@26# E. Hakami and E. Larsson~unpublished!.
@27# S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, Phys.

Rev. B38, 2297~1988!.
@28# B. B. Mandelbrot,The Fractal Geometry of Nature~Freeman,

San Francisco, 1983!.
@29# E. Bouchaud and J.-P. Bouchaud, Phys. Rev. B50, 17 752

~1994!.
@30# R. Gutfraind, I. Ippolito, and A. Hansen, Phys. Fluids7, 1938

~1995!.
@31# J. Feder,Fractals ~Plenum, New York, 1988!.
@32# J. F. Thovert, J. Salles, and P. M. Adler, J. Microsc.170, 65

~1993!.
@33# P. M. Adler, C. C. Jacquin, and J. Quiblier, Int. J. Multiphase

Flow 16, 691 ~1990!.

FIG. 24. Mean finite cluster sizêZ0& in noncorrelated lattices as
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