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Geometry of simulated fractures
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The geometry of real fractures is modeled by random surfaces numerically generated. The fracture space and
the contact area are determined by the spatial distribution of the upper and lower surfaces. The contact area and
the mean aperture are analytically studied. The contact number is calculated for fractures with different height
covariance functions. The percolating properties and the structure of the percolating cluster formed in the
fracture are determinefiS1063-651X96)00906-3

PACS numbefs): 64.60.Ak, 91.60.Ba, 02.46k, 47.11+]

I. INTRODUCTION The model of a fracture as a void volume between two
random spatially correlated surfaces was successfully used in
Experimental and theoretical analyses of hydraulic, transvarious studies. Browrj4,16] numerically analyzed fluid
port, and mechanical properties of real fractures in rock haydow and electric conduction in a fracture whose surfaces
shown that they depend on the geometry of fracture Spacléave normally distributed helghts. Closure of a fracture with
and surfaces. It has been shown by experimgn® and by two rough surfaces was considered by Unger and Niage

direct numerical simulationg3,4] that the flow in a single The model of a fracture with spatially correlated fractal sur-

fracture with rough surfaces occurs through a system of rovxl;aCes was developed by Wang, Narasimhan, and S¢hsz

paths separated by contact zones. The flux distribution dégrrs %?‘r}g(iﬂferso\fmi:? l;g? gﬁglé[ulr?;ggsa Is with the aper-

pends on the variance of the fracture aperture probability " 1, e hest of our knowledge, the geometrical properties
d|str|but|_on; the size of the flow channels is Qetermlned BYot fractures have not been systematically studied from a
the spatial correlation length of the aperture field. theoretical standpoint, though they represent an interesting
Flow channeling in fractures influences solute transporjyroplem where several ingredients are intimately mixed. Ba-
[1,5]. It was found that the apparent solute dispersion desically, a fracture is a random two-dimensional structure
pends on the variance of the aperture distribuf@hand on  whose geometry and topology control the flow properties.
the mixing between flow channels,7]. The two-dimensional character is a crucial simplification in
The models that are usually used in the study of themany respects. The properties of excursion sets of random
stress-strain behavior of fractured media include the apertufelds [20] can be used to derive the number of contacts
density distribution and the spatial correlatid8$. The clo- between the two surfaces; because of the two-dimensional
sure of rock joints depends on the fracture surface roughnesdaracter, this number is closely related to the connectivity
and the surface topograpli9]. The distribution of contacts of the open spade1]. The fracture aperture is also a random
between fracture surfaces influences the normal joint stifffunction of position to which the classical techniques of per-
ness[10]. colation (cf. [2_2]) can be app!ied. Hence 'ghis study necessi-
Natural rough surfaces are considered in many studiegates the application of a variety of techniques that are gath-
but only a few works deal with real fractures. Brown, Kranz, €r€d here in an unusual manner; in order to make this paper
and Bonner[11] measured surface profiles and considered®2dable by people with different backgrounds, each tech-

the composite topography of natural rock joints. The comidue is presented in a relatively detailed way, which may be

posite topography of correlated and uncorrelated rock fractoo long for the specialists. A last important remark is that

tures was studied by Brown and Schqlz2,9]. Aperture Ijha?ran\a/\/srlljeltr?esgrﬂgcs)sztig(ljey will be compared to experimental
measurements were made by Hakam' and Baf8) and This paper is organized as follows. Section Il is devoted
spatial correlations of the aperture field were analyzed b¥0 a general description of the model where fractures are
Hakami[14]. An exponential model was found to be a good

obtained by generating couples of random surfaces. Each

approximation of these correlations. Laboratory measureg,tace can be described by its height with respect to a given

ments of fracture apertures and contact areas were present@ference plane. The heights are assumed to be normally dis-
by Gale[15]. Some geometric properties of real fracturesyipyted with a given standard deviatian,. The distance
were studied experimentally by Gentig]. It was shown petween the average planes of each surface is the mean ap-
that the experimental variograms of surface profiles at smakrtureb,, of the fracture. The heights of one surface may be
distances are well described by a Gaussian model. assumed to be spatially correlated; a particular correlation
function has been chosen that contains two parameters: the
correlation length and a characteristic expondtt Finally,
*Permanent address: Institute for Problems in Mechanics, Russidhe two surfaces of a given fracture may be correlated one to
Academy of Sciences, 101 prospect Vernadskogo, Moscow 11752@nother; this intercorrelation is characterized by a dimension-
Russia. less parametef. Hence the modelization that is used in this
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paper contains four independent parameteysr,, I/oy,, H,

and . The resulting fractures can be described by a number
of macroscopic geometric entities, such as the contact zones,
the closed and open fracture volume, and the cyclomatic
number of the percolating cluster which are carefully defined
in Sec. Il. The influence of the four independent parameters
on these macroscopic properties will be studied in this paper.

The method of random surface generation with given sta-
tistical properties is described. A spatially periodic stochastic
field is generated on a unit cell by the method of Fourier
transforms. The unit cell of sizke is discretized in elemen-
tary squares of siza. Thus two additional length scales
andL are introduced in the modelization; since they are ar-
tificial in character, they should not influence the macro-
scopic properties. Because the two surfaces of the fracture
cannot overlap, the corresponding Gaussian variables are at a
threshold, as they were for reconstructed porous m&fh
This direct analogy can be used to derive some analytical
expressions for the mean contact zone area, for the mean
fracture volume, and for their variations that are compared
with numerical results in Sec. Ill. Good agreement is ob-
tained for mean values and for variances.

The distribution of contacts between fracture surfaces is
analyzed in Sec. IV. For Gaussian random fields with a dif-
ferentiable covariance, the contact number estimations com-
pare well with the numerical results. The analysis was ex-
tended to nondifferentiable covariances. It is shown that for
self-affine surfaces the number of finite contact zones de-
pends upon the discretization paramedér according to a
power law. When the contact area is smaller than a certain
critical value, some of the noncontacting zones form the
open fracture space that corresponds to the so-called perco-
lating cluster. The connectivity of the cluster is quantified by
the first Betti numbeB;(App), i.e., the number of indepen-
dent cycles. It was found tha;(Apo) is a decreasing func-
tion of the correlation length of the aperture field, in the
same manner as the contact number. 4

Percolating properties and the structure of the percolating ”\ w

cluster of the fracture are analyzed in Sec. V. The percolating
thresholdP, for the model considered corresponds to “site” % 0
percolation on a square lattice. It is shown tRatis a de-

creasing function of the ratiba. For the percolating cluster ‘ ‘379
near the threshold, the critical exponemtsg/v, and y are g
calculated for various parameters of the model.

Il. GENERAL c)
A. Height distribution FIG. 1. (a) Conventions and notations for the fracture geometry.
Real fractures in rocks are very heterogeneous and irregub) Overhanging of a fracture surface profile) Contact area and
lar in character. Usually, an arbitrary reference plar® is  void area of a fractured/1?=6, N,=9, andn =1.5.
introduced and both upper and lower surfaces of the fracture

are described bjFig. 1(a)] scales comparable with the resolution of the laboratory pro-
. . filometer[24]; therefore such cases are not considered here.
z=h=(x,y)+hg, () At a given point &,y), the mean surface*, the separa-
tion w, and the distance,, between mean surfaces are de-
+ .. fined as
where hy are the mean planes of each surface. This is a
simplification of the problem because a real fracture profile Z*=1(h*+h{ +h~+hy), (2a)

may not be a single-valued functionfndy [Fig. 1(b)]. A
detailed analysis of the rock surfaces with a scanning elec- e
tron microscope showed that overhangs are not prevalent at w=h"+hy—h"—hg, (2b)
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bm=(W)=hgJ —hy , (200  the correlation of the surfaces may be derived from the spa-
tial cross-covariance functiofsee Sec. Il B
where () denotes the statistical expectation. WHep de- The separatiorb is not equal to the local distande,

creases, the two surfaces touch one another. In principle, tHeetween surfacefFig. 1(a)] and it is obvious thaby<b.
new shape of the two surfaces after contact occurs could hidere b is called the aperture of the fracture afin) is the
obtained by taking into account the deformation of the twomean aperture.

matrices. However, this phenomenon will not be considered

here. Instead, a Slmpllfled viewpoint will be adop[d(&4] B. Correlations in the fracture plane

and the separatiob is defined as Usually,h™ are homogeneous random functionsxadind

w, w(r)=0 y. The statistical properties of a random fidi¢t) are char-
b:{()’ w(r)<0. (3)  acterized by a probability density(T) for the statistical dis-
tribution of the local values o and a spatial covariance
Observation results are often described by a Gaussian di§<nction C+(r,s), which is defined as

tribution [9] Cr(r,9={[T(N—(DIT(9—(T)]). (109

2
o(T)= ! ex;{— T . T=h",n" (4) I T(r) is a homogeneous and isotropic field, which is often
\/EUT 2072 true for fracture surfaces, the covariance function only de-
pends upon the scalar=|r—¢d| (|al| denotes the norm of a
o3=(T?, vectora),

where oy is the standard deviation df; it is supposed that C+(r,5)=C+(r). (10b)

(T)=0. This paper will be restricted to such Gaussian height )

distributions. The correlation between the upper and lower surfaces can be
When both surfaces are totally separated and do not touckescribed by a cross-covariance formula

each other, the mean surfareand the separation are also % o _

Gaussian functions with standard deviatiosg and o, Ch(r,9)=(h"(Nh~(9)). (1D

which are related ta, by If C= andCy are known ancC}, is only a function ofr, the

2 (5) covariance function€,« andC,, for z* andw can be found

w?

O'ﬁza'g-i-%o

CZ*(r):(CthC:;)/Z,

— Lt =
Opn=0pn =0 .

The upper and lower surfaces of real fractures cannot be Cu(r)=2(Cp-C). (12

considered as statistically independent. Observation of Several covariance functions are proposed for fracture

“mated” fractures[11] showed that profile heights of both surfaces. Whitehouse and Archd@b] used an exponential
surfaces are correlated over large distances, depending UPAhction

the origin of the fracture. Consider the cross covariance
_ 2
(h*h~)= 02102, ©) Ch=opexp(—rl/l), (13
. , wherel is the correlation distance. Experimental measure-
If the surfaces are not correlated, it is easy to derive f(6M 1 ants of fracture aperture distributiga4,26 showed that
that spatial correlations db of a large class of rock fractures may
o2=242 % be W_eII approximated by the exponential model. _
w h- It is known [20] that a homogeneous random field pos-
In the opposite case of perfect correlation, both surfaces have¥SS€s everywhere a mean-square derivative if and only if the
the same profile and is constant _second-o_rdgr_partlal den\{afuve (_)f its covariance _functlon ex-
ists and is finite at the origin. Since the correlation function

o,=0. (8) (13) displays an angular point at=0, random fields with
this covariance are nondifferentiable in mean square.
The correlation parametérmay be defined as If Cy, is a Gaussian function,
h*h- o2 Ch=apexd — (r/1)?], (14
o=t 2 >:1—2—W2, 0=0<1. 9) "
Th Th the corresponding random fields are continuous and have

derivatives in mean square. Bath3) and(14) are particular

The correlation parametet widely varies for various types cases of the general forf@7]

of fractures. Brown and Scholl2] used totally unmated
joints (6=0) in closure experiments. In contrast with this, Ch=olexd — (r/H2"], OsH=1. (15)
Gentier[2] studied fractures in granite that were in the op-

posite limit of highly correlated surface®~0.98. The The covariance functiotil5) with 0<H<1 corresponds to
joints used by Brown, Kranz, and Bonndrl] were charac- self-affine surfaces that remain the same in a statistical sense
terized by6~0.7 and 0.94. More detailed information about under an affine transformation in vertical and horizontal di-
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Cy- - For intermediate values @ the real fracture surfaces
are shown to be correlated on scales larger than some ‘“cor-
relation distance”\y, and mismatched at small scales. This
can be deduced from the power spectra of the composite
topography of fracture surfac¢&1]. An analysis of the to-
pography data for Gaussian fractures in quartaig=4 um)
and in granitgo,~1.5 um) showed thah, lay within 150—
200 and 75-100um, respectively[9]. These values are

d) larger than the corresponding correlation distaricés the
surfaces: 12—15 and 5-um.

C. Generation of fractures

In order to analyze the fracture geometry, random fields
with prescribed statistical properties should be generated.
Since only homogeneous Gaussian surfaces are considered
here, the problem is restricted to normally distributed vari-
ables.

Since it is impossible to generate fields with an arbitrarily
large extent, an homogeneous fracture is considered as a
two-dimensional spatially periodic medium, composed of
identical unit cells of sizé., which is supposed to be much
larger than the correlation distankcef the generated field. A
correlated random Gaussian field can be generated by the
method of Fourier transforms, which is recalled by Adler
[23]. The numerical grid is composed Nf X N, elementary
squares of siz&x=Ay=a; the correlation distance is dis-
cretized into n; such squares, i.e./=nja; moreover,
L=N_a. At each nodéx,=ka, y,,=ma), the Gaussian spa-

f) tially correlated periodic fieldr,,, may be calculated as

e)

FIG. 2. (a)—(c) Examples of simulated aperture distributions N1 R 277 (sk+mp)
over the fracture plane and)—(f) the corresponding graphs of the Yim=N_ E \/—’F\prspex;{ - —}
skeleton of the open fracture space. Six levels of shadings are dis- s,p=0 N

tinguished from zerdwhite) to the largest valuédark of the ap-
erture. The shading steps are equal to &2%ata are for(@ and
(d) by/on=1, H=1; (b) and (e) b/c,=0.2, H=1; (c) and (f)

k,m=0,...N, (16

b,/op,=0.2,H=0.5. A 1 N -1 2 i (sk+ mp)
Ro=<z2 > Ckmexp{—} s,p=0,... N,
N[ km=o N_

rections[28]. This form of the covariance function uses the

fact that in practice there exists an effective upper cutoff

length | for self-affinity, above which all the correlations R 2 (sk+mp)

between surface heights disappear. The pararhkisicalled Xsp=Wz 2 kaexr{N—}

the “roughness exponent[29] and it describes the scaling L

law for self-affine surface heights. . . . . .
The analysis of power spectra of various natural rock sur—Ckm is the covariance matrix of m, which is derived from

faces[24] showed that they verify the power la{&5). The (100),

self-affine model was successfully used to describe fracture

geometry[18,19 and fluid flow; it was also used to study Cum= CT(W/X§+yﬁ1)_ (17
electrical transporf4,16] and hydrodynamic tracer disper-
sion in fractureq30]. Xim IS @ noncorrelated standard Gaussian field.

The upper and lower surfaces of the fractures are sup- Pproperties of the mean surfazé are not analyzed here.
posed to be generated with the same spatial correlation disthe upper and lower surfaces of fractures are supposed to be
tancel; the covarianceC, and the cross covarian€®; are  independently generate@=0), but with the same spatial
described by the general forfd5) with the samd as well.  correlation distancé. Because the vertical and lateral coor-
This agrees with the results of the laboratory study of well-dinates are not connected in the models considered here, it is
mated (6~0.97) fractures in granite, where the covariance possible to use different length scales for them. The natural
functionsCy,../o 2 and the cross covarian@f/C} (0) were  length scale of the vertical coordinate is the standard devia-
found to be identicd]2]. In the opposite limit#=0, the cross tion o, ; the two horizontal coordinates were normalized by
covarianceC; =0 and the spatial correlations in the fracture the correlation distancke
plane are completely defined by the covariance functions Some examples of generated fields are presented in Fig. 2



5610 V. V. MOURZENKO, J.-F. THOVERT, AND P. M. ADLER 53

005 S ] nc.=N (19

Q _ Se= (20

001t X \

,_ where A, is the area of the projection of the total contact
0.005¢ PN Tl surface on the plane=0, A is the cross-sectional area of the
I " D= X - % fracture plane, andll; is the total number of contacts ovar

! [Fig. 1(c)].

iy When the separatiob,, is large enough, the contact sur-

\ face is split intoN,, finite contact zones. Whdu,, decreases,

0,001 : T new contact zones appear and the existing ones grow and
7] merge; at some critical valuk,,=b,,., a contact zone of

infinite extent appears, together with some finite contact
FIG. 3. Standard deviatioms , of the mean fractional void area zones that persist.

T
7
L1

(Sp) over N, realizations forby/o,=0.2, H=0.5. Data are for Equivalently, the total numbeM, and the numben,, for
I/a=8 (dotted lineg and 2(dashed lings N; =10 (O), 20 (X). the areal? of noncontacting zoner void zone can be
introduced
for various values ob,, andH. For each generated sample,
the covariance&C, defined in(10a, can be estimated as |2
Ng= NO K . (21)
N -1 .
Ci(k,m)= N2 szo TspTs—kp-m— T2 (18)  The fractional voidS, is defined as
csh
2 AO
NE So=7=1-S, (22)

=t T T=h",h" A
CNZgpto P

he]
Il

where A, is the projection of the total surface of the void
volume of the fracture.

When the contact surface is small, most of the noncon-
tacting zones may be gathered into a large percolating clus-

Due to the finite size of the unit cell§$ may differ from
C; and may vary from one realization ®fto another. It was

found that for a single realizatiol § may dif(])‘er from>the ter, where fluid circulates. The probabiliB, of the appear-
theoreu%alch used in(16) by more than 20% fox/|=1. 506 of such a percolating cluster is called the percolating
WhenC, was averaged over five realizations, the d'ﬁerenceprobability [31].

with Cy, decreased to 10%. The ratio Spc between the area of the projectidp of

_Tests were performed to find the minimal number of ré~ye grface of the percolating cluster aAdis called the
alizationsN, that yields statistically representative results. s o tional area of the percolating cluster

Various quantities were averaged orrealizations and\,

was increased until the mean values were stable. The number

of realizationsN, that was needed to obtain significant _Apc 23
means depended upon the quantity of interest and the param- A (23
eters of fractures. In each case, it was defined separately.

It should be noted that the statistical stability of the resultsA fracture can be partitioned into open and closed spaces
depends upon the sample slzi. For example, Fig. 3 shows depending whether or not a zone with~0 belongs to the
the standard deviation s, of the mean valugSy of the  percolating clusters. The total numhisp of void zones in-
fractional void area of the fracture averaged over differenludes the number of percolating clusters, which is usually 1,
sets of realizations as a function of the paramétér It is ~ and the numbeN,—1 of isolated void zones of finite extent.

clear thato s, is a decreasing function df/l. Define the average siz&, of a finite void zone as
N
D. Terminology 7 _EkglAﬁo (24)
. 0~ ’
When surfaces are in contact, the area of contact and the EEE 1Ako

number of contact zones are random variables that depend on

the statistical properties of surfaces and the mean separatiavhereA, is the area of th&th isolated void zone. The sums
b,,. The contact surface can be described by two variablesn (24) run only over zones of finite extent and the infinite
namely, the number of contact zonesfor the ared?, based  percolating cluster is excluded. The definitio®4) corre-
on the correlation distance, and the fractional contact areaponds to the usual definition of the average cluster[&2p
S., which is defined as used in percolation literature.
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\

When the two surfaces are separated and the contact sur-
face is subdivided into several zondk, the percolating
cluster may be skeletized and can be reduced to a graph with
N, connecting edges ard, vertices. This graph can be used
as for porous medif32] to characterize the structure of the
percolating cluster by the number of independent cycles, i.e.,
by the first Betti numbeg;(Apo),

0

It should be noted that the numbg;(Apo) can be con-
sidered as the number of “holed(i.e., of contact zongsn
the percolating cluster. It is obvious thagi(Apo)=<N. be-
cause some contacts can be located within void zones of
finite size(such asC; andC, in Fig. 4).

The geometry of a fracture is fully described by the co-
variance function€,+ andC,, and by the probability densi-

%
/ e i
Bi(Ard=Ne—N,+1, @9 /
C -
where the number of connected components is supposed to 4
be equal to 1. ¢, Jr<? c
4
C
7225

ties ¢(z*) and ¢(w). The main goal of this paper is the @
statistical characterization of the geometry of a fractive.

.. . . . . Contact
statistical realizations of fractures with fixed valuesagf, zone
o, |, H, andb,, were generated; then the statistical means
of the aperturgb), of the fractional areaS; , Sy, Spc, and of FIG. 4. Distribution of contacts within a fractureN =5,
other characteristic quantities were analyzed as functions g,(Ap0=3. Two contact<C,; and C, are contained within a finite
these geometrical parameters. void zoneV; two contacts of finite exten€5; andC,, are contained

within the percolating clustefpc; Cs is the only contact zone of

infinite extent.
Ill. GAUSSIAN SURFACES: SOME THEORETICAL

RESULTS AND NUMERICAL SIMULATIONS U; =Via, (0=0).

Some parameters of Gaussian correlated fields, such as

the mean aperture, the fractional area, and some others ma&nce(26) only describes the cade>0, the probability den-
be estimated analytically. Such estimations are presenteslty needs to be renormalized by the constagpt
here together with results of numerical simulations.

i i A==, p=erfcf ———|. 2
A. The fractional void area b p p ( \/20{,‘) (27)
It is convenient to start with the fractional void ar8a
The aperturéd(x,y) defined by(3) has a probability density

N . LN For any realizationS, is defined as the average of the phase
that is simply a truncated Gaussian distribution y ™o 9 P

function B of the void zones

Ap (b—bpy)? 1
¢t (b)= Vimot ex;{— 2072 } b>0 So:K fAB(r)da, (283
(26)
TABLE I. Standard deviatio&rs0 and o, of the mean void 1, w(r)>0
areaS, and of the mean apertuke estimated numerically and de- B(r)=[o, w(r)<0. (28h)

rived from Egs.(32) and (38). Data are forH=1, b,/o,=0.2,

I/a=4, andN,=50.

The random field, which is derived from a Gaussian field,
s, oy was used by Adler, Jacquin, and Quibli8] to study three-
dimensional porous media. It is clear that the statistical prop-

7L numerical  theoretical  numerical  theoretical gtjes ofB can be derived from those of. The derivation of
0.050 0.0338 0.0361 0.0659 0.0740 the covariance functio€g from C,, is presented by Adler,
0.057 0.0431 0.0412 0.0891 0.0845 Jacquin, and Quiblief33] together with the solution of the
0.067 0.0496 0.0481 0.1028 0.0987 inverse_ problem. Here, only the me@p and the variance
0.080 0.0626 0.0577 01174 01184 ©°f So will be evaluated(S;) can be estimated as

0.100 0.0742 0.0722 0.1546 0.1479

(Sp)=Prodw>0}. (280
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needed, as illustrated by the following calculations. Accord-
ing to (28), the fluctuations o5, are described by the vari-
ance

Sincew is a standard Gaussian functidi$,) is equal to

(So)= g- (29)

2

1
5 | ®do

1
Uéoz'?\z JAJ’A<B(V1)B(V2)>d01d0'2_
The substitutiorb,,=0 gives the obvious resu{By=1/2.
Results relative tdS,) are presented in Fig(& for vari- 1
ous covariance€,. Good agreement exists between the  ~x fACB(r)df” (30
theoretical result29) and the numerical results.
The value ofS, defined by(284 is the spatial average of \hereCyg is the covariance function of the fieBi(r) [23]
the variableB over the fracture plané& and converges to
(Sy) only when the sample side/l tends to infinity. In prac- Cg(r)=(B(0)B(r))—(B)?
tice, Sy is also a random variable and varies from one statis-
tical realization of a fracture to another and the variance +oo +oo
o5 =(S5)—(Sp)* depends upon the sample siz4. (B(0)B(r))= fo dleo p(wy,wo)dw,, (313
So far, only the Gaussian distribution of the heights has
been used to findSy). If the variance ofS; is to be calcu- ande(w;,w,) is the joint distribution of two Gaussian vari-
lated, the correlation properties in the fracture plane arables

1 (Wl_bm)z_z'y(wl_bm)(Wz_bm)+(W2_bm)2
=R 205%(1- ) ’

Cu(r) 2\ Y2 50 b2
Y 0_;2 , I ”r” ( ) <b>0 b+ - o’ S=ex W . (35

It is easy to show that, i€, (r) decreases exponentially
whenr tends to infinity,Cg(r) also approaches 0. In the
limit 1/L<1 andb,,/o} <1, one can obtain froni30)

1)2 b 2
2
=\—| |Z,—|—]| Z
7% (L) ' (d:) ?
whereZ, andZ, depend only upoid. Formula(32) provides
an estimation of the variance of the numerical calculations of
the mean valugS,) and illustrates the influence of the 1

sample size on the statistical stability of the numerical simu- bo=— f b(r)do. (37)
lations (see Table)l Ag Ja

The statistical averagg®), and(b) can be directly calcu-
lated from the numerical realizations bfat one node. In
practice, thanks to ergodicity, one can estin{dg, or (b) as

the spatial averagéds, and b, defined as

: (32)

— 1
b= A fAb(r)da, (36)

B. Mean aperture These estimations vary from one realization to another with
Two possible definitions of the mean apertdbg can be variancess(bo)” ando(b)”, which can be found in the same

2 : 2 : L
distinguished. The first ongh), is the mean value over the vv.ay.asU.SO. The variancer(b)* can b_e derwed fI’OI”.n the J(?m.t
void fracture area, and the second di is taken over the distribution(w;,w;) of two Gaussian variables in the limit

whole surface of the fracture I/L<1 andby,/op <1,
+°C )2 b
(0)0= ], “betbia, 33 o(0)?=(b2)~ (0= | | | Zs=| 5| Zs|, (38
L O'b
+o0 —
(b)z(S(,}f be(b)db= g (b)o, (34  whereZ,; andZ, depend only omH. The estimation ofr(b,)?
0 may be written as
where(b) may also be considered as the mean volwe 4
of a fracture per unit area. U(b_0)2:_2 o(b_)z. (39)

(b)q can be derived fron(26)

he)
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FIG. 5. Mean fractional void areg) [solid line; Eg.(29)], the
mean aperturéb) [dashed line; Eq(34)], and the mean aperture
(b)q [dotted line; Eq.(35)] of a fracture as functions df.,/oy, .
Data are forl/a=1.25,N_ =40, andH=0.5 (X); I/a=4, N =80,
andH=1 (O). The numerical data are given ik and O). (b)
Ratio (b)v2/0}, (solid line) as a function of the mean fractional
contact aredS;). The dotted line corresponds bg,v2/o} and the
dashed one tdb)qv2/oyg. The experimental data of Hakarfii4]
are denoted by (drill core sections measurementnd X (bore-
hole photographs The data of Hakami and Larss¢®6] and Gale
[15] are denoted by and +, respectively.

Figure 5a) shows(b), and(b) vs b,,. All the numerical
estimates are in good agreement with the theoretical predi
tions.

The formula(38) shows the influence of the sample size
on the dispersion of the spatial averdgaround the statis-
tical average(b). The theoretical predictions given Hg8)
are in good agreement with the numerical estimations i
Table I.

Equationg29) and(34) yield a relation betwee(S,), (b),
and({b),. Figure 8b) shows(b)v2/a, as a function of S;),
whereo is the variance ob over the fracture plane

Sbya}

V2m

of= (b)) =(b)?=5 (b2+op D)+ —(b)2. (40)

The standard deviation, is used instead of the model pa-
rameteroy because it can be estimated directly in experi-
ments. The dependencbgv2/a} and(b)qv2/op, on(S.)
are presented in Fig.(5).

When the fractional contact areSsare small(S.<0.01),
the ratio(b)v2/oy, rapidly varies withS;. In this range of
parametersS. depends on the distribution of the highest
asperities of the fracture surfaces, which correspond to the
tail of the height probability density(h) (4); henceS; is
expected to vary largely from one fracture sample to another.

For large S, (S;>0.2) the ratio (b)v2/0,, decreases
slightly with increasingS; . This means thab; is sensitive to
the minimal nonzero aperture that can be measured in the
experiment. The rati¢b)v2/ o, is larger than 1 fo5,<0.48,
while the parametds,,v2/ o} tends to O wher$, approaches
0.5.

For comparison purposes, the experimental data are pre-
sented in the same plot. The first two data sets of Hakami
[14] were obtained by two different types of measurements
of the aperture distribution in a single fracture within a
quartz sample. The third one was presented by Hakami and
Larsson[26]. Two data points represent the experimental
results of Galé15]. Good agreement between all experimen-
tal data and the theoretical predictions of the theory was
obtained. It should be noted that the data of Hakami and
Larsson[26] for fracture with smallS, are scattered around
the theoretical curve; this can be explained by the sensibility
of S, to the distribution of the highest surfaces asperities,
which varies substantially from one fracture sample to an-
other, as already mentioned.

IV. DISTRIBUTION OF CONTACTS
BETWEEN FRACTURE SURFACES

Mechanical properties of real fractures mostly depend on
the distribution of contacts between fracture surfaces and
their area. The number of contacts and the mean area of a
contact zone are analyzed as well as the number of closed
zones with nonzero aperture for simulated fracture surfaces
with various values of correlation distances. Before the simu-
lation results are discussed, some theoretical concepts are
presented.

A. Theory

The numbem,. of contacts or the numbaer, of contacts
per ared? for two surfacegcf. (19)] with normally distrib-
uted heights can be considered as the number of zones where

the Gaussian random fiel=b,,—w with zero mean and

standard deviations; has valuesF>b,. If F is a two-
dimensional field, the number &f: of zones withF>u in a
set A may be estimated from the value of the differential

fdopology characteristit, of F [20]. Briefly, N, is

NX:Xl_XO! (41)

wherey; and y, are the total number of pointxy) € A that
satisfy[see Fig. 6a)]

x1: F=u, F;=0, F;>0, F{,<O0;

(42)
Xo: F=u, F;=0, F/>0, Fj,>0.
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FIG. 6. (a) Differential topology characteristil, of the shadowed contact zong.=8, x,=2, N, =6, andN.=6. (b) Contact zoneC,
contains two isolated void zonéé, andV,. x;=4, xo=3, N,=1, andN.=3. (¢) Infinite contact zoneC bounded by the infinite line
L. x1=2,x=2,N,=0, andN.=1. (d) Configurations that contribute to the discrete analog of the differential topological characteyistic

Equation (41) gives the number of connected contact The differential topology characteristi¢, of the fracture
zones of finite extent that do not contain any void area or argpace is also related to the Betti numbers of the void zone
not part of a contact zone of infinite extent. If any contactand of the contact zone of the fractufig. 7). The void
zone contains some “holes,” each hole lowérgby 1[Fig.  zone of the fracture can be reduced to a topologically equiva-
6(b)]. The outer boundary of a periodic infinite contact zonelent network of edges and vertices. This network or graph is

does not contribute t&, [Fig. 6(c)]. composed of some connected components whose number is
Generally,N, , N., andN, are related by called the zeroth Betti numbgl(Ay). The first Betti number
Bi1(Ap) (or the cyclomatic number of the void zonis equal
N,=(Ne—Ng)—(No—Np), (43)  to the number of independent cycles of the graph
=N—N,+
whereN7 andNg are the numbers of contact zones and of B1(A0)=Ne= Ny Bo(Ao), (45
void areas of infinite extent. It is clear that whereN, andN, are the number of edges and vertices of the
graph, respectively. It is obvious that any independent cycle
N,=<N (44)  of finite extent encloses one finite isolated contact z@fie

the cycleABEA in Fig. 7) and that the numbers of these
and the formula41l) provides a lower bound of the contact finite cycles and of those finite contact zones are always
numberN, . equal.
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In (46) and(47), it is assumed that any finite contact zone
(void zong is enclosed in a cycle i, (A;). In particular,
these results do not apply when neittigrnor A, percolates.

Consider the case when only one percolating void zone

2

D

in (43 is equal to the number of isolated void zones that
correspond to the closed porosity of the fracture. The first
term N.—N¢ in (43) is the number of isolated contacts. If
the fracture is far from the percolation threshold, most con-
tacts are contained in the infinite void zone ag-N{ is
close toB,(Apo), the cyclomatic number of the percolating
cluster. Finally,

//// Z/R%% exists. The number
N\ ¥
/// é /;, // e .

2

e S
7))
) /////é

N,=B1(Apd) —Ng. (49

According to Adler{20], the averagéN ) overA is given by

m(ANIA u p[ u?

RN e I

FIG. 7. Graphs of the voidbold lines and contactthin lines (50)

[ 3°Cg 9°Cg (aZCF)Z]
zones of the fracture. Contact zones are shadowed. X,y=0

axZ gy |\ axay
where u(A) is the area ofA. If the spatial correlation is

given by the Gaussian covarianCg, (14), the random field
w will be almost surely continuous, together with its partial

If a void zone of infinite extent exists, it contains one
infinite cycle at leastsee the cycl ABCDAIn Fig. 7). The
correspondence between the numbers of infinite independent. . _ .. _ %12 _ 2.
cycles and of contact zones of infinite extent depends on th%nvatlfvesA—(Zab) and u(A)=(L/1)% (N can be de-
topological structure of the fracture space. If a contact zon uced from(0),
and a void zone of infinite extent exist, each contact zone 2 2
may be enclosed by one and only one independent cycle of (N,)= (_> _m ex;{ }

) =\2wo}

the graph of the void zone. When all contact zones are finite,
the infinite cycle of this graph does not correspond to any

contact zone. In the opposite limit where only finite void B. Comparison with numerical data for Gaussian fractures
zones exist, the corresponding graph consists of some num- (H=1)

ber of finite cycles and the Betti numbg;(A,) is equal to

the number of isolated contact zones that are located within Figure 8 shows results of numerical computations of the
the finite void zones. contact numben, for an ared “ when the sample size/| is

In generaL the tota| number of Contam iS re'ated to varied. It is found that for a fixed value of the discretization
the Betti numbers; (A,) of the graph of the void zone of the ratioa/l, n; approaches some limit valug; whenL/l—.
fracture by In each series of calculations with fixedl, the variations of

n. aboutny do not exceed 10% wher/|=10. The statisti-
Ne=B1(Ag) —Ng+ Nz . (469 cal variations ofn. increase if the mean siZ2, of a contact
zone approaches the sample size. Table Il contains the rela-
A relation dual to(46a can be derived for the numbai, of  tive standard deviationnc/nC of the contact number and the
void zones and the first Betti numbgg(A.) of the graph of inverse mean size of a contact zone obtained numerically as

(51)

m
T 5 %2
20'b

the contact zone of the fracture D.=VS./n, for various values ob,/o}, and fixedL/I. It
T can be seen that wherD . approache$/L =0.05, the statis-
No=B1(Ac) —N¢+Ng . (46b) tical variance of the contact number increases.

Figure 8 shows that the limit value? varies with the
In order to obtain a relationship betwehiy and the Betti  discretization ratica/l. In order to analyze the influence of
numbers of the graphs of void and contact zones of the fraca/|, the contact numban, is plotted in Fig. 9 for a fixed /|
ture, Eq.(43) can be used. It is obvious that the numbi§i$  as a function of/l. It is clear that for a large enough sample
andNjg of contact zones and void zones of infinite extent aresize L/I=20 (curve 3, n. rapidly approaches some limit
equal to the numberBg(A;) and Bg(Ag) of connected infi-  value n?. In the casel/I=5 (curve 1, n. diverges with
nite components of the corresponding graphs. Finallyjs  decreasing/| due to a too small sample size that is compa-
expressed as rable to the contact zone mean si2g~5| (see Table .
The variations oh obtained by a linear extrapolation of the
N, =B1(A0) = B1(Ac) = Bo(Ao)+ Bo(Ac).  (47)  numerical result¢see Fig. 9 with fixed L/l and decreasing
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FIG. 8. Contact numben, for an areal? as a function of the
ratio I/L of the correlation distanckand of the sample size for
fixed values ofa/l. Data are foH =1, b,,/0,=0.2,a/l =0.125(1),
0.25(2), 0.5(3), andb,/o,=1, a/l =0.125(4). The dashed lines
correspond to the theoretical values given by &4). The number
of realizations isN,=100 for the smallest/L and 200 for the
largest one.
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FIG. 9. Contact numben, as a function of the discretization
ratio a/l for H=1, b/0,=0.2, and a fixed value dfL. Data are
for 1/L=0.2 (1), 0.1(2), 0.05(3), and 0.0254).

for b, /0,<0.7, the difference betweefbl) and the esti-
mated value ofn;) increases with decreasify,/o,. An
increase of the sample sitél does not decrease this differ-
ence.

al/l are illustrated in Table Ill. It can be seen that, when the

sample sizel /| is increasedn? tends toward 0.031. Table

Il and Fig. 8 show that sample size effects disappear for

L/1=20. The limit valuesn{ andn? obtained in numerical

C. Numerical data for self-affine fractures (H<1)

Because of the fractal character of these fractures, a dif-

simulations differ from the theoretical predictions given by ferent asymptotic behavior is expected. The convergence of

(51) only for b,/o,—0, as can be seen in Fig. 10.

The difference betweetN,) and(n;) can be explained
by using the formulg43). Whenb,/o,>1 the numbeiN §
of isolated void zones vanishesN;=0, the ratio
(No—Ng+N¢)/N, tends to 0, andN, approaches\;. In
the limitb,/o},=0, the ratio No—Ng+NZ)/N, is finite and
the termNy,— N g+ N¢ cannot be neglected i@3). It means
that for low b/o}, the formula(51) cannot be used for the
estimation of(n.).

It may be concluded that fob,/0,=0.7, (N,) as de-
rived from (51) gives a good approximation f@n.), while

TABLE Il. Mean area of a connected contact zdagn,., the
inverse mean size of a contact zobg=/S./n., and the relative
standard deviation of the contact numbﬁ;{c/nC as functions of
b /oy, . Data are foH=1, L/1=20, andl/a=8. The estimations are
derived from Eqs(27), (29), and(51).

Se/Nne I/D=1yn./S;

o, e
b, /o calculated theory calculated theorycalculated

0.0 25.51 % 0.20 0 0.39
0.1 20.07 52.68 0.22 0.14 0.41
0.2 15.82 24.96 0.25 0.20 0.36
0.4 9.58 11.26 0.32 0.30 0.29
0.6 6.08 6.82 0.41 0.38 0.20
0.8 4.39 4.67 0.48 0.46 0.17
1.0 3.20 3.43 0.56 0.54 0.15
14 2.08 2.09 0.69 0.69 0.12
2.0 1.13 1.19 0.94 0.92 0.13

n. whenlL/l is increased is illustrated fd4=0.5 in Fig. 11.
It can be seen thai, reachesn{ more rapidly than in the
caseH=1 (Fig. 8). A good estimation of ; can be obtained
with L/I=5, instead of 20 foH=1.

Another obvious difference between the cades0.5 and
1 is that forH=0.5, n., strongly depends on the discretization
ratioa/l for fixed L/l. Figure 12 displays a log-log plot of;
as a function of/a for a fixed ratioL/l and various values of
H. The number of contacts, was found to be approxi-

0.08 T T T T T
o
0.06 * B
R * *
L
*
n, 0.04f 8
*
5 x ]
X8R
0.0 b
*
3
Q 0.6 1.2 1.8
bm! Oy

FIG. 10. Contact numben, as a function ob,/o,,. Data are
for H=1, a/l =0.125, andl/L=0.05 (O), 0.04 (X); H=0.5, a/l
=0.8, and /L =0.031 25(*). The solid line corresponds to E¢1)
for N, .

X
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FIG. 11. Contact number, as a function of/L for H=0.5 and
fixed a/l. Data are forb,/o,=0.2 anda/l =0.0625(1), 0.125(2),
and 0.5(3).

mately constant only foH =1. It can be seen that; follows
a power law

(52

The exponens depends upoil and uporb/o},, as shown
in Fig. 13.

In order to estimates, consider the discrete analog of the

differential topology characteristid, (41), wherey; and xo
are the total numbers of nodes; (y;), which satisfy[see
Fig. &(d)]

x1: FXi,y)=u, F(Xiq1,y))<u, (53
F(XihYj-0)<u, F(Xjy1,Y;-1)<u;

Xo: F(Xi,y))=u, F(Xj1,y))=u,

L o H=05 ]
0.5}
L © 006
e
P ¥
L O O . 4
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FIG. 12. Contact numbaer, as a function of/a for b,/ 0-,=0.2,
N,=100,1/L=0.05, and various values &f. The straight lines are

the mean-square fits. The error bars represent the standard deviation

interval for the mean value.
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FIG. 13. Scaling expones(O) for the contact numbens, and
u (X) for the cyclomatic numbep;(A,o) as functions ofH for
b/o,=0.2. The solid line corresponds t68), the dashed line to
(57). ForH=0.5, data are fob,/o,=0.4 (a), 0.6 (b), and 1(c).

F(Xi,yj-1)=U, F(X4q1,y;-1)<u.

This can be easily related to Fig(a when Fig. &d) is
rotated by an angle of 7/4.
The mean numbergy;) and(xy) can be estimated as

2
P1, (xo)=

2
Po.,

L

a

A (54

(x1)=

where P, and P, are the probabilities of the configurations
displayed in Fig. &). The probabilitiesP, and P, are ex-
pressed by using the joint probability of the four Gaussian
correlated variables, y, z, andt:

+ o u u u
P1=J dtj dxf dyf f(x,y,z,t)dz, (55
u — — 0 — 0

+o0 +o0 +o0 u
P0=J’ dtf dxj dyj f(x,y,z,t)dz,
u u u —©

TABLE lIl. Extrapolated values of the contact numire? in the
limit a/l—0 for variousL/l. Data are foH=1 andb/o,=0.2.

L/l ng
10 0.0350
20 0.0308
25 0.0302
30 0.0296
40 0.0306
theory 0.0178
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y=FOiYi-1), 2=F0G1Yj-), FIG. 14. Mean cyclomatic nume;(31I2/A>p (solid lineg and

the mean contact numbegn.),, (dashed lingsaveraged over per-

C (E) C (‘/2 E) colating fractures as functions éfa for b,/o,=0.2, 1/L=0.05,
g W I andN, =100.
N=T gz YT vz
b b D. Connectivity of percolating fractures
All the integrals in(55) can be estimated in the limét/| -0, The number of contactdl, is related to the cyclomatic
and the averagéx;— xo) per unit area is given by numberp;(A,) of the graph of the void volume of a fracture

by (46). Let us consider another topological characteristic of
this volume, namely, the cyclomatic numbej(Apo) of the
percolating cluster of the fractufef. (25)].

In order to analyze the structure of percolating clusters for
each realization of the fracture space, the two-dimensional

a
[

. (56

272H oH-1h b2
<X1_X0>~ _20_;2

ex
2mot

In the limit H=1, this formula is identical t¢51). According

to (56), the scaling exponers is aperture field is reduced to a graph by a method of condi-
’ tional thining[32]. Some examples of such graphs are shown
S=2—2H. (57) in Fig. 2. The graph can be characterized by the nunher

of edges and the numbatk, of junctions(or vertices. When

This dependence is presented in Fig. 13. The comparisoNe ahdN, are known, it is easy to calculafé(Apo) (also
with the numerical results show thés7) provides an esti- Shortened ag,) from (25),

mate that is systematically too low. It should be recalled that Figure 14 displayg,1°/A), and(n.), vsl/a for H=0.5

the topological characteristi, only gives a lower limit of ~and 1, where(n.),, is only averaged over the percolating
the contact number according (¢4). This is especially im-  realizations of the fractures. The main observation is that the

portant forH <1, where the generated surfaces are self-affinéyclomatic numbers, is close to the total contact number
fractals (on scalesx<I|) and their cross sections are also Nc- This means that most contacts between two fracture sur-
fractals[31]. One may suppose that with decreasing valuedaces are in the interior of the percolating clugiéit exists)

well as the difference betwed, and x;— xo. closed parts of the void vplume of the fractur_e. _
Whitehouse and Archarf@5] measured the numbat;, of _As can be seen from Fig. 14, the cyclomatic numpeis

peaks detected on a given length of a random surface profi@ven by the power law

by using various sampling intervadgl. They found that for E [\~

the profiles with normally distributed heights and the expo- B =~ (59)

nential covariancg13), N, was inversely proportional to A \a

a/l. The scaling law(52) with the exponens given by (57)

for H=0.5 also predicts that, varies as &/1) *. where the exponent depends upotd andb,/o},. Figure
The relation(52) is a consequence of the fact that for 13 displaysu calculated for variouH together with the

H<1 the fracture surfaces are self-affine objects. A horizonexponents; it is obvious that(8;1%/A) and(n.) obey the

tal section of the surface defines coastlines that are selfame scaling lawu is a decreasing function df,/oy,; the

similar fractals with a fractal dimensidi31] values ofu are very close to the corresponding values.of

dc=2—H. (58) V. STRUCTURE OF PERCOLATING CLUSTERS

Mandelbrot[34] showed that in a plane section, the number When the separatiob,, between the two surfaces in-
of islands having an area greater than a prescribed Isize creases, the total void fracture area grows; whgns larger
varies ad ~%. The relation(58) is also displayed in Fig. 13. than a certain critical value, most of this surface is connected
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over the entire fracture plane and forms a percolating cluster. o
For finite samples of simulated fractures, various criteria can

be chosen to determine whether or not a fracture is percolat-

ing [32]. Here a cluster is defined as percolating if a fluid can 0.8}
pass through it from one end to another. For a spatially pe-
riodic system, a cluster is percolating if all its homologous
points can be connected through the cluster. 081

A. Percolation threshold 0.4-

In order to analyze the percolating probability of fractures L
with random surfaces for each value of the parameters of the
model, N, realizations were generated and the percolation
probability P was defined as the fraction of realizations that
contain a percolating cluster. The method used here to search
for percolating and connected components of the void vol-
ume of a fracture is a modification of the method derived by
Thovert, Salles, and AdI¢B2] fqrthe characterizatipn of the FIG. 15. Percolation probabilitf as a function ob,/cr, for
geometry of real porous media. Each node,;) is SUp-  cqrrelated(solid line9 and uncorrelateddotted lines fields. Data
posed to be connected with the first nearest neighbor ixt the 4re for a/L =0.0167 (0) and 0.01(x). The correlated fields are
or y direction, but not with the second nearest neighborgenerated wittH=0.5,1/a=2.

(Xi+1,Yj+1). First, connected components are determined,

0.2f

byl op

which contain nodes with>0 that can be continuously con- A~N-"17 (61b)
nected through the cluster; then, nonpercolating clusters are L
eliminated by means of a pseudodiffusion process. Figure 16a) shows a log-log plot ofA vs N, for a clas-

Thus the percolation of a fracture volume is consideredsical uncorrelated site percolation. Error bars are estimated
here as a correlated site percolation problem with a siteby comparingP,, and A found with successive data points
occupation variabl®; defined on the discrete grid according removed from the setR,S,). The linear fit givesy=1.35
to (28D). The site-occupation probability is equal to the mean+0.02, which is close to the theoretical value 1.333. The
value (S given by(280). The spatial correlation of(X,y)  percolation threshol®, estimated by extrapolation ¢61a

induces correlations of the occupation variatiigs A simi-  gives P,=0.59+0.04, which is also close to the theoretical
lar approach to the correlated site percolation was developggediction 0.592 75Fig. 16b)].

by Prakaskhet al.[35], who considered normally distributed
correlated fields converted to corresponding discrete corre- 2. Correlated fields

lated occupation variables. The influence of the spatial correlations in the distribution

1. Uncorrelated fields of site-occupation var_iabIBi on the percolation threshold
) o ) P. was studied by various mod€l37,38,37,39,4D Prakash
The percolation probability? is analyzed as a function of et a). [35] and Sahimi40] studied two-dimensional lattices
the distanceb, /o, of the discretization rati@/| and of the  \ith the site-occupancy variab; obtained by using ran-
sample size /I. First, P is calculated for uncorrelated fields gom Gaussian fields; , which are described by correlation
I=0 to analyze the influence &, =L/a. _ functions with ferro-type and antiferro-type correlations, re-
Figure 15 shows variations &t with by/o, for various  gpectively. The spatial correlations were introduced by using
values of N_. The probability P increases monotonically power-law correlation functiorC,~r2**, —2<\<2
from 0 to 1 whenb,,/o, increases. The transition zone de-[35] and by generating a fractional Brownian motion with
creases wheiN, increases; it should be a step function for C,~1-r?" 0<H<1[40]. The systems with ferro-type cor-
infinite Ne. _ ) relations, when the neighbor of an occupied site prefers to be
The _f|n|te—S|ze scah_ng method may be used_ in order ccupied, are represented in these models\by0 and
determine the percolation threshdh [36]. P(Sp) is tenta- {1 respectively; the percolation threshold of such systems
tively fitted by a two-parameter error function was shown to systematically decrease if the degree of spatial
correlations, characterized byandH, increases.
1 (%1 (6—Pg)? Coniglio et al. [39] considered percolation in continuum
=oq | A ST o7 (& (60 systems using a Ising model of ferromagnets. A ferromag-
netic interaction among particles introduces a spatial corre-
lation that depends upon temperature. When temperature
tends to infinity, the percolation threshold tends to the same
threshold as for uncorrelated systems. Near but above the
critical temperature, the correlation length of the system di-
verges and the percolation threshold tends toward
Weinrib [38] studied the percolation thresholds of a two-
dimensional continuum system whose site-occupation vari-
Pa—Pc~N ", (618  able B(x) is zero for |A(x)[><I* and one for|A(X)[>=1%;

whereP,, is the average concentration aAds the width of
the transition regiofi22]. The percolation threshol, is the
limit for P,, when the sample sizN, tends to infinity. The
critical exponentr and P can be derived by using the scal-
ing laws[22]
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FIG. 17. (a) Width A of the transition region as a function of the
sample sizel /I for correlated fields. Data are fa/l =0.25. The
solid lines are the least-squares fits of the numerical data points.
The number of realizations isl,=800 for L/I =15 and 200 for
L/I=75. (b) Difference P.— P,, as a function of the sample size
L/l for correlated fields. Data are fafl =0.25. The solid lines are
the least-squares fits of the numerical data points.

FIG. 16. (a) Width A of the transition region as a function of the
sample sizd./a for uncorrelated fields. The solid line corresponds
to the linear fit of the numerical points with=1.34+0.02. (b)
Averaged concentratiorP,, as a function of the sample size
(L/a) Y for uncorrelated fields. Data are for=1.337. The linear
fit (solid line) gives an extrapolated percolation thresh@idtted
line) P.=0.59+0.04.

A(x) is a homogeneous, isotropic complex Gaussian randorBec. V B. The influence of two parameters Bpis studied,
variable defined over the plane. He analyzed random fieldsamely, the discretization rat@/| and the roughness expo-
on a discrete lattice with the Gaussian correlation functiomentH.

(A(0)A*(x))=I, exp(—x?/21?) with I/a=8. The percolation The influence of spatial correlations on the percolation
threshold of such a system was foundatl ;=0.519, which  probability P is illustrated in Fig. 15. One can see that the
corresponds t®.=0.405; this value is less than for a purely transition regionA is larger for correlated systems than for
uncorrelated systen?.~0.59. It should be noted that this uncorrelated ones.

threshold differs from3, valid for many two-dimensional The two limits a/l>1 and a/l<1 correspond to two
continuum systems with statistically equivalent conductingknown situations, i.e., purely uncorrelated systems with
and insulating regions. P.=0.59 and continuum systems with,=1/2 [38]. H has

An analysis of the “annealed percolation moddlt1],  an effect similar to the Hurst exponeHtin the model con-
cubic resistor networks with correlated borid4], and per-  sidered by Sahini40], because the correlation functi¢ib)
colation on random latticep42] also showed thaP, is a  approximates 4 (r/1)?" atr/I<1. In order to find the per-
decreasing function of the degree of spatial correlatiorcolation thresholdP, and the exponent, P, and A are
within a percolating system. By using the technique of finite-calculated as functions df/I for fixed ratiosa/l. Figure 17
size scaling, the percolation threshédis analyzed here for presents an example of numerical estimatio®gfnd v for
correlated fields described by the correlation functitB). H=1 and 0.5 andi/I=0.25. A trial value ofP, is used in
In this technique, the calculation &f, follows the determi- order to obtain the best linear approximation of the log-log
nation of the correlation-length exponent but a detailed plot of P.— P, vs L/I; then, P. is varied until a minimum
discussion of the results concernimgwill be presented in mean-square difference between the linear fit and the nu-
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500, so only a relatively small range &fl has been ex-
plored for smalla/l.

0581 | A comparison ofP. for H=0.5 and 1 shows that it is
smaller in the latter case; this agrees with the results of Sa-
e | himi [40], who found thatP,. decreases witlil. The perco-
X lation threshold€P.=0.5 and 0.59 correspond to the mean

contact area§,=0.5 and 0.41, respectively. Bandis, Lums-
den, and Barto43] measuredS, of various rock fractures
i under a normal load by inserting a thin plastic sheet between
the interlocked joint walls; they found th&. ranged be-
- tween 0.4 and 0.7 for various samples at the largest pres-
sures. Similar results were obtained by Gerft&r The resin
§ injection in the fracture space under a normal load performed
by Gale[15] gave S,=0.17-0.18. Witherspooet al. [44]
0.46 : : ' : ) : ) measureds, as 0.1-0.2 for granite samples and 0.25-0.35
0 04 0.8 1.2 . .
” for marble samples. Taking into account that the measure-
ments using plastic films may overestim&e one can see
that the percolation threshold can be reached only at very
high normal loads. This agrees with the fact that in most
experimental works fractures remained open for fluid flow
even at large pressurgd,15,44.
) ) ) o ] ) It would be interesting to use the percolation methods in
merical data is obtained. The finite-size scali@d) gives  the study of the hydromechanical behavior of fractures near
P:~0.507-0.001 forH=1 and 0.53&0.002 for H=0.5.  the percolation threshold. It was sho] that the mean
The errors inP are estimated by successive removals of thegcture aperturéb) and the hydraulic onb,, estimated dur-
data points from the s&P,,,L/I). . ing flow experiments are linearly related. This dependence is
Figure 18 and Table IV provide the functiéh(a/l) cal-  yajid only at small and modest normal stresses. There are
culated for two values ofi. In both casesP, is an increas- gome experimental observations at large press(ué&s,
ing function ofa/l. Th(_a percolation threshold,, calcu_late_d whereb,, was found to decrease witlb) more rapidly than
at a/l=4 for H=0.5, is equal to 0.59G%0.0002, which is  ne |inear dependence predicts. Pyrak-Nolte, Cook, and
very close to the value of classical uncorrelated systems. Nolte [46] attributed these deviations from the linear depen-
In the opposite !lmltea/I—>O, linear extrapolations of the Jences betweeb;, and (b) to the behavior of the critical
trends forP(a/l) give Peo~0.527£0.009 and 0.5030.002  neck or the point of the smallest aperture along the flow path.
flor H=0.5 and 1, respectively. Both values are clos€le=  Thjs approach can be combined with standard methods of the
3, which is valid for continuum systems. It should be notedpercolation analysi§22] of the macroscopic conductivity
that it is difficult to analyze the case of smalll, because the pear the percolation threshold in order to obtain the corre-
mesh sizeéN, , which corresponds to a given effective Samplesponding critical exponents and to compare them with the

sizeL/l, increases with decreasiragl. The mesh siz& is  ones found in experiments. However, such an analysis is
limited by computer time and memory and did not exceedyyside the scope of the present paper.

FIG. 18. Percolation threshold, as a function of the discreti-
zation ratioa/l. The solid lines are the least-squares fits of the
numerical data points. Data are fdr=0.5 (O) and 1(X).

TABLE IV. Percolation threshold. and the critical exponent 3. Analytical models

as functions of the discretization ratigl for H=1 and 0.5. . . . . .
The existence of a diverging length scale in a percolating

all P, B system near the percolation threshold provides the possibility
of using the renormalization transformation in order to ob-
H=1 tain the critical parameter§d7,36,48. The technique is
extrapolation 0.5030.002 based on the fact that the initial percolation system and the
0.0625 0.505(0.007 1.62(0.01) transformed one, whose sites replace finite cells of the initial
0.1250 0.509(0.002 1.43(0.04 lattice according to some cell-to-site transformation rule, dis-
0.2500 0.507(0.001 1.38(0.03 play the same percolation properties. The spatial correlation
0.5000 0.519(0.001) 1.35(0.04 of the site occupancy directly introduced in the system
1.0000 0.5519(0.0007 1.34(0.04 changes the situation. The properties of the percolation sys-
tem at scales larger than the correlation distanege ex-
H=0.5 pected to be similar to uncorrelated systems, but at small
extrapolation 0.5270.009 distances they depend on the correlation function, even near
0.0625 0.539(0.009 1.61(0.09 the percolation threshold. This means that the occupation
0.1250 0.519(0.002 1.36(0.01 probability of the renormalized site with sizg larger than
0.2500 0.538(0.002 1.30(0.09 differs from that witha; <<| and the search for the fixed point
0.5000 0.547(0.009) 1.33(0.02 of the renormalization transformation cannot give true value
1.0000 0.569(0.002 1.41(0.06 of P;.
4.0000 0.590(0.001) 1.37(0.09 However, the renormalization procedure can be directly

used in order to estimate global properties of the correlated
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TABLE V. “Local” percolation thresholdP |, for variousH
and various percolation rules.

0.7 T 4 T T

H P.1oc (@/1=0.025 P: oc (@/l =0)
one direction
0.5 0.520 0.513
P 1 0.479 0.472
two directions
0.5 0.651 0.644
1 0.650 0.640

In both cases, the percolation threshold is lesdHerl than
for H=0.5.
This approach implies that all sites in a large-scale sample
are independent, which indeed is not true. The validity of
FIG. 19. Local percolation probability, . as a function o/l these estimations may be analyzed by calculating the cova-
for H=1 (solid lineg and 0.5(dashed linesfor the percolation in ~fiance of percolation probabilit€,,
one direction and in two directions. Data are fdit =2. The num-

all

ber of realizations i&, =100 for the minimurra/l and 2000 for the (PiP;)—( P;)?
maximuma/I. p= Py (P2 " (62
I |

systems[49]. It was shown thgt successive recglculatlons ofwhere P,=1 if a cell percolates and 0 if no®; and P,
permeabilities of a network with a small size unit cell to thatcorrespond to two neighbor cells cut from the same sample
with a larger one give the best global permeability estimat&yith L,=2L. Figure 20 show<, calculated forH=1 and
when compared to conventional averaging techniques, sugar the percolation along one direction. It is clear that within
as the geometric mean. statistical errorsC, can be considered as almost constant
The fact that a correlated system should have the samgver a wide range of values &, except close to 0 or 1. For
critical parameters as an uncorrelated one at scales largarl =0.5, the covarianc€, is about 0.2 and increases up to
thanl is used here in order to estimate the percolation threst3.4—0.5 whera/l decreases down to 0.05. This means that
old P, in the limit a/l —0. If a renormalized site has a size the correlations between neighboring sites remain significant
a,>1, it can be considered as a site of an uncorrelated perand can influence the percolation threshBld,,.. Calcula-
colating system with the known “global” percolation thresh- tions performed forH=0.5 and for the percolation in two
old P,~0.593. One can use a Monte Carlo renormalizationdirections show that the maximal value@f is not changed.
group procedurd:36] to calculate a local site occupation The QovarianceCp deCfeaS.eS if the renormalized cells
probability P, ., for which the fraction of large-scale per- have a sizé/l larger than 2. Figure 21 shov@, calculated

colating cells is equal t®.. P. . will be referred to as a

“local” percolation threshold. 06 -
A series of random correlated fields is generated on a grid

of sizeLy/I=4 and a squark/I=2 is cut from each sample. i % N

A percolation probability is calculated for various site prob- A X

abilities S,. The procedure that was used for large-scale per- g4 ¥ %

colation analysis is applied here to find the average concen-
tration P,, and the width A. Using formula (60), the
percolation thresholdP, . is calculated.

A rule is chosen in order to decide whether or not a large
cell is occupied. The renormalized cell is occupied if it per-
colates at least in one direction. Figure 19 sh®wyg,. vsa/l
calculated foH=1 and 0.5. It was difficult to avoid statis-
tical errors in the estimation d?. . even with a relatively
large number of realizationgnore than 1000 fom/1>0.2).

But, the trend is obvious. .. decreases with/l and tends T T e
toward a limit for smalla/l. ' ' s ’ ‘

The functionsP. .. (a/l) are fitted by linear functions ?
and the limits fora/l—0 are estimated by extrapolation.  FiG. 20. CovarianceC, of the percolation probabiliies as a
Table V contains these limit values together Withoc cal-  function of the “site” probability S, for the percolation along one
culated fora/l =0.025. The value®. ., which are found direction. Data are foH=1, N,=100, andL/I=2. The solid line
by using the second ruléercolation in 1 direction are  corresponds tt/a=2, the dashed line tia=8, and the dotted line
close to the ones found in the global analysise Table IY.  to I/a=20.

o
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The finite-size scaling method is applied here to the per-
colation problem in correlated systems with covariance func-
tions C,(r) given as power laws

—a

1
Cn(r)=opy 2-2°°
1, i=0,

ri
a

LN oo

wherea=1 and 3. It can be shown that near the percolation
threshold the correlation functioBg~(2/m)arcsinCy/o )
and decreases at-»o with the same exponent asC,,. The
critical exponentv is estimated by the error function, which
fits (60) for numerical data and the power lad@1b). It was
found that v=1.35+0.02 for =3 and »=2.26+0.02 for
V15— 1 : j : : : j ‘ a=1. One can see that the long-range spatial correlations in
s the site occupations described by the power (&8 influ-
ence the critical behavior of the percolation system. The
FIG. 21. CovarianceC, of the percolation probabilities as a value.v=2.26 IS Iargertham.=.2.g|ven by(64), \.Nh'Ch can pe
function of the site probabilityS, for the percolation along one explained by t,h? h'g,h sensmvny of to st.a'ustlcal errors.
direction. Data are foH=1 andL/l =2. The solid line corresponds _The same flnlte-SIZ_e scaling method IS used for t_he perco-
to L/I=2, the dashed line th/I =4, and the dotted line th/I=g.  lation systems described by the covariance functici®.
The critical exponenv is calculated forH=0.5 and 1 and
for three successive valueslofl. ForL/I =4, C, is less than various values of the discretization ratidl. One may expect

0.06 and such sites can be considered as uncorrelated.  that the correlation systems with an exponentially decreasing
covariance functioril5) have no long-range correlations and

» exhibit the same critical behavior near the percolation thresh-
B. The critical exponent » old as uncorrelated systems. Table IV presents values of
Near the percolation threshoR)., the connectivity length ~ estimated forH=0.5 and 1 and it can be seen thaindeed
&, which is defined as the average root-mean-square digraries near its value=1.333 for classical uncorrelated per-
tance between occupied sites belonging to the same finiteolating systems. No substantial influenceadf on v was
cluster[31], diverges a$22] observed.

&~p—Pc ™, (63) C. The critical exponent 8

It is known that near the percolating thresh@g~ P,
the mean fraction areéSpo of the percolating cluster for
infinite systems depends @B, as

wherev is the critical exponent. It was shown that for vari-
ous percolation systems without any spatial correlatiois,
almost the samg36].

However, there are some situations where long-range cor- (Spo)~((Sp) — Po)?, (66)
relations affect the critical properties. Weiniib0] studied
the correlated percolation problem with a power law correawhereg is a critical exponent; for two-dimensional systems,
lation functionCg~r~“. He supposed that a uniform transi- it is equal to
tion takes place across the system if the spatial variations of
(IM)=; B, for different regionsV are small compared to B=73~0.139 (67)

p—P.; he found that the scaling law63) with the same i )
correlation exponent as for pure random system is valid for all types of lattice structures with noncorrelated elements.

only if a>2/v for two-dimensional percolation. Systems It is difficult to calculateg directly for correlated systems

with a<2/v exhibit a new critical behavior with beca_use it_is very_sensitive_to various factors. Instegﬂ, of
the finite-size scaling technique is used, which provides the
v 64) ratio B/v.

For finite lattices, the percolating cluster a®a depends
not only onS,, but also on the size of the system. Near the

Prakashet al. [35] used a Monte Carlo renormalization- percolation thresholdSpq) for noncorrelated finite systems
group calculation applied to a correlated percolation problenys sjze L verifies[22]

with power-law correlations. They found that the calculated
v agrees with(64) for a>1. Fora<1, their values of» were (SpQ~L P"F([(Sp)— PcIL™), (68)
lower than the predictions dB4).

The study of the effect of the correlated percolation prob-wherev is the critical exponent anB is a scaling function.
lem on systems whose occupancy variables are obtained yor fixed (Sp) and varyingL [so that (Sy)—P)L"<1],
fractional Brownian motion withC,~1—r2" showed that (Spo is proportional toL ~#*; for two-dimensional lattices
for all H, the critical exponent retains its value for uncor-
related system$40]. The same result was obtained in the B

5
analysis of annealed correlated percolafidf]. v 4_8N0'104' 69
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TABLE VI. Critical exponentg and the ratiog/v for H=0.5

and 1 and for variouta. The exponeng is derived from the ratio
0.48r i Blv and the value ob in Table V.
all Blv B

Spc | | H=1
0.1250 0.10(0.01 0.15(0.02
0.44F 0.2500 0.12(0.02 0.16(0.03
0.5000 0.096(0.008 0.13(0.02
1.0000 0.099(0.008 0.13(0.02
. 4.0000 0.12(0.01 0.16(0.02

. H=0.5
0.1250 0.13(0.01 0.18(0.02
04 50 100 200 0.2500 0.11(0.01 0.14(0.02
Lia 0.5000 0.09(0.09) 0.12(0.02
FIG. 22. log-log plot of the strengtkSpo) of the percolating 1.0000 0.073(0.007 0.10(0.02

cluster in the noncorrelated lattice as a function of the lattice size
L/a for the site probability?,=0.593. The solid line corresponds to

the linear fit of the numerical data. one takes into account that the void zone of the fracture is a

fractal in the first case. This means that the scaling properties

Figure 22 displays a log-log plot @B Vs the system of the percolating cIu_ster near the percolation threshold may
size L/a for an uncorrelated lattice. The site occupation be influenced by the mtemgl geometric strycture of a fractal.
probability is (Sy)~0.593. A linear fit givesB/v=0.103 Forl/a=1andH=0.5, itis found tha/v is smaller than
(0.0D, which is in good agreement witl69). the value given in69). This is surprising because one may

For correlated fields, the following approach is used. ThefXPect that whe/a tends to 0, the system becomes uncor-
discretization ratid/a is fixed and the separatidn,/oy, is related. Hence_ these resu_lts show that the scaling properties
chosen so that the site probabilit§,) is equal to the perco- of the percolating cluster in correlatgd s_yst(_ams may dgpend
lation thresholdP,, for given|/a andH. Then,L/| is varied ~ UPON the form of the spatial correlation in site occupations.
and (Spp is estimated. Figure 23 shows log-log plots of
(Spe vs L/l for H=0.5 and 1 and/a=8. The ratio8/v is D. The critical exponent ¥

derived from the slope of the linear fit of the numerical data.  cgnsider the average size of the void zodgslefined by

Table VI presents values @ v for H=0.5 and 1 ar}d vari_ous Eq. (24). Near the percolation thresholdZ,) depends on
values ofl/a. One can see that fdl=1 the ratio8/v is (Sy) as[22]

almost the same as for uncorrelated lattices. In the case
H=0.5, B/vincreases slightly with/a from 0.073 forl/a=1 (Zo)~1{(So)—Pc| ™7, (70
up to 0.13 forl/a=8.
The difference betweeH =0.5 and 1 can be explained if wherey is a critical exponent.
It is difficult to obtainy directly and again finite-size scal-
. _ ing is used. The method is based on the expected scaling
0.62- | behavior of(Z), which should increase with/l as

<Zo>~(|E) " (7)

For fixed values of/a, N, =200 realizations of correlated
fields were generated and the mean giZg) is calculated
i and averaged over nonpercolating configurations. The ratio
b vlv is calculated from a linear fit of the log-log plot ¢Z,)
_ vs L/I. Figure 24 displaysZy) as a function oL/l for un-
correlated fields estimated ¢$;)=0.593. A linear fit of the
numerical data gives the ratig/v=1.88 (0.05, which is

0.5F d
i close to the theoretical value

Lil Z

_ 5 1.7917 72
v 24 ' (72)

FIG. 23. log-log plot of the strengt{Spo) of the percolating
cluster in correlated systems as a function of the effective lattice Calculations of(Z,) for correlated systems were per-
size L/| for I/a=8. Solid lines correspond to the linear fit of the formed only for smalll/a. For largel/a (>4), the depen-
numerical data. Data are fét=1, b,/0,=0.06 (O) andH=0.5, dence of(Zy upon L/l is significantly different from(71)
b/ 0,=0.13(X). due to the statistical scatter of the numerical data and a cor-
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. merical analysis of the scaling behavior of the mean cluster
i size(Zy) does not reveal any influence of the spatial corre-
lations on the ratioy/v.

VI. CONCLUDING REMARKS

The geometry of simulated fractures has been analyzed by
using numerical and analytical methods. A fracture was pre-
Z, sented as a space between two random surfaces described by
s a normal probability distribution of heights and a spatial co-

1 variance function in the fracture plane. The numerical re-
sults, relative to the mean area of contacts between the sur-
faces of the fracture, the mean aperture, and the expected
number of contacts, have been successively compared to
analytical expressions for various values of the distance be-
) tween the surfaces and of the correlation length. The mean

Lia contact number for fractures with a spatially correlated

height profile distribution is found to depend on the discreti-

FIG. 24. Mean finite cluster sizZZ) in noncorrelated lattices as  ,4tion ratio according to a power law. It was shown that the
a function of the lattice size/a for the site probabilityP.=0.593.  harcolation threshold for the model of a fracture considered
The solid line corresponds to the linear flt. O.f the numerical data'corresponds to the site percolation on a square lattice. The
The error bars represent the standard deviatioBiof percolation threshold for a correlated system is smaller than

that in a pure random lattice. Near the percolation threshold,

the percolating clustemhich is formed by the open space of
rect estimation of the ratig/v was impossible. Fol/a=1, the fractur¢ has fractal scaling properties and the critical
linear fits of log-log plots(Zy) vs L/l gave the same ratio exponents for various values of the paraméiein the co-
vlv=1.87(0.06 for bothH=0.5 and 1. Inthe cadd=1 and variance function of the generated surfaces profile were es-
[/a=4, the valuey/r=1.93(0.03 was found. Hence the nu- timated.
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